Oligodendrocyte Development in Culture Systems

  • Steven E. Pfeiffer
Part of the Advances in Neurochemistry book series (ANCH, volume 5)


The oligodendrocyte has as its primary recognized function the task of producing a prodigious amount of membrane, possibly unequaled by any other cell type, and maintaining it for a lifetime. Morell and Norton (1980) estimate that during development, these otherwise rather diminutive cells produce several times their mass in myelin membrane each day. Additional interest is occasioned by the manner in which oligodendrocytes send multiple copies of this specialized membrane a substantial distance from their cell bodies before amplifying it into vast sheets that become wrapped and compacted around qualified axons (Peters, 1964; M. B. Bunge et al., 1962; Hirano, 1968; R. P. Bunge, 1968). Thus, oligodendrocytes engage in membrane biogenesis on a scale to intrigue the membrane biochemist.


Schwann Cell Myelin Basic Protein Myelin Sheath Experimental Allergic Encephalomyelitis Myelin Formation 

Abbreviations used in this chapter


cytosine arabinoside




carbonic anhydrase


UDP-galactose:ceramide galactosyl transferase (cerebroside galactosyl transferase)


2′,3′-cyclic nucleotide 3′-phosphohydrolase


3′-phosphoadenosine-5′-phosphosulfate cerebroside sulfate transferase (cerebroside sulfotransferase)


day(s) in culture


experimental allergic encephalomyelitis


electron microscope, e.-microscopic, e. microscopy


galactosylceramide (galactocerebroside)

GalCer sulfate

galactosylceramide sulfate (sulfatide)


glial fibrillary acidic protein


glycerol 3-phosphate dehydrogenase


glutamine synthetase


β-hydroxy-β-methylglutaryl-coenzyme A


tritiated thymidine


immunoglobulin G


lactate dehydrogenase


light microscope, l.-microscopic, l. microscopy


myelin-associated glycoprotein


myelin basic protein


multiple sclerosis


polyacrylamide gel electrophoresis, p. g. electrophoretic


proteolipid protein




GalCer sulfate

W1, Wla, W1b, W3 proteins

Wolfgram proteins (see Section 2.3.2c).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abney, E. R., Bartlett, P. P., and Raff, M. C., 1981, Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Dey. Biol. 83: 301–310.CrossRefGoogle Scholar
  2. Abbott, J., Mayne, R., and Holtzer, H., 1972, Inhibition of cartilage development in organ cultures by the thymidine analogue 5-bromo-2-deoxyuridine, Dev. Biol. 28: 430–442.PubMedCrossRefGoogle Scholar
  3. Aguayo, A. J., Charron, L., and Bray, G. M., 1976a, Potential of Schwann cells from unmyelinated nerves to produce myelin: A quantitative ultrastructural and radiographic study, J. Neurocytol. 5: 565–573.PubMedCrossRefGoogle Scholar
  4. Aguayo, A. J., Epps, J., Charron, L., and Bray, G. M., 1976b, Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: Quantitative microscopy and radioautography, Brain Res. 104: 1–20.PubMedCrossRefGoogle Scholar
  5. Aguayo, A. J., Kasarjian, J., Skamene, E., Konghavn, P., and Bray, G. M., 1977, Myelination of mouse axons by Schwann cells transplanted from normal and abnormal human nerves, Nature (London) 268: 753–755.CrossRefGoogle Scholar
  6. Aguayo, A. J., Dickson, R., Trecarten, J., Attiwell, M., Bray, G. M., and Richardson, P. R., 1978, Ensheathment and myelination of regenerating PNS fibers by transplanted nerve glia, Neurosci. Lett. 9: 97–104.PubMedCrossRefGoogle Scholar
  7. Allerand, C. D., and Murray, M. R., 1968, Myelin formation in vitro: Endogenous influences on cultures of newborn mouse cerebellum, Arch. Neurol. 19: 292–301.PubMedCrossRefGoogle Scholar
  8. Altman, J., 1969, DNA metabolism and cell proliferation, in: Handbook of Neurochemistry, Vol. 2 (A. Lajtha, A., ed.), pp. 137–182, Plenum Press, New York.Google Scholar
  9. Amonn, F., Baumann, U., Wiesmann, U. N., Hofmann, K., and Herschkowitz, N., 1978, Effects of antibiotics on the growth and differentiation in dissociated brain cell cultures, Neuroscience 3: 465–468.PubMedCrossRefGoogle Scholar
  10. Aparicio, S. R., Bradbury, K., Bradbury, M., and Howard, L., 1976, Organ cultures of nervous tissues, in: Organ Culture in Biomedical Research, British Society of Cell Biology Symposium I ( M. Balls and M. Monnickendam, eds.), pp. 309–354, Cambridge University Press, Cambridge.Google Scholar
  11. Barbarese, E., and Pfeiffer, S. E., 1981, Developmental regulation of myelin basic protein in dispersed cultures, Proc. Natl. Acad. Sci. U.S.A. 78: 1953–1957.PubMedCrossRefGoogle Scholar
  12. Barbarese, E., Carson, J. H., and Braun, P. E., 1978, Accumulation of the four basic proteins in mouse brain during development, J. Neurochem. 31: 779–782.PubMedCrossRefGoogle Scholar
  13. Barbarese, E., Pfeiffer, S. E., and Carson, J. H., 1983, Progenitors of oligodendrocytes: Limiting dilution analysis in fetal rat brain culture, Dev. Biol. 96: 84–88.PubMedCrossRefGoogle Scholar
  14. Barde, Y. A., Lindsay, R. M., Monard, D., and Thoenen, H., 1978, New factor released by cultured glioma cells supporting survival and growth of sensory neurones, Nature (London) 274: 818.CrossRefGoogle Scholar
  15. Barnes, D., and Sato, G. G., 1980, Methods for growth of cultured cells in serum-free media, Anal. Biochem. 102: 255–270.PubMedCrossRefGoogle Scholar
  16. Barnett, R. J., 1948, Some aspects of the experimental cretin-like animal, Thesis, Yale University School of Medicine, New Haven, Connecticut.Google Scholar
  17. Beach, R. L., Bathgate, S. L., and Cotman, C. W., 1982, Identification of cell types in rat hippocampal slices maintained in organotypic cultures, Dev. Brain Res. 3: 3–20.CrossRefGoogle Scholar
  18. Benda, P., 1978, Rodent glial lines, in: Dynamic Properties of Glia Cells ( E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), pp. 67–81, Pergamon Press, Oxford.Google Scholar
  19. Benda, P., Lightbody, J., Sato, G. H., Levine, L., and Sweet, H., 1968, Differentiated rat glial cell strain in tissue culture, Science 161: 370–371.PubMedCrossRefGoogle Scholar
  20. Berg, G., and Schachner, M., 1981, Immunoelectron microscopic identification of 0-antigenbearing oligodendroglial cells in vitro, Cell Tissue Res. 219: 313–325.PubMedCrossRefGoogle Scholar
  21. Bhat, N. R., Sarlieve, L. L., Subba Rao, G., and Pieringer, R. A., 1979, Investigations on myelination in vitro, J. Biol. Chem. 254: 9342–9344.PubMedGoogle Scholar
  22. Bhat, N. R., Subba Rao, G. S., and Pieringer, R. A., 1981, Investigations on myelination in vitro: Regulation of sulfolipid synthesis by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 256: 1167–1171.PubMedGoogle Scholar
  23. Bhat, S., and Pfeiffer, S. E., 1981, Cholesterol ester hydrolases in primary cultures of fetal rat brain, Trans. Am. Soc. Neurochem. 12: 252.Google Scholar
  24. Bhat, S., Barbarese, E., and Pfeiffer, S. E., 1981, Requirement for nonoligodendrocyte cell signals for enhanced myelinogenic gene expression in long-term cultures of purified rat oligodendrocytes, Proc. Natl. Acad. Sci. U.S.A. 78: 1283–1287.PubMedCrossRefGoogle Scholar
  25. Biddle, R., March, E., and Miller, J. R., 1973, Mouse News Lett. 48: 24.Google Scholar
  26. Billings-Gagliardi, S., and Wolf, M. K., 1982, CNS hypomyelinated mice: Morphological and tissue culture studies, Adv. Cell. Neurobiol. 3: 275–307.Google Scholar
  27. Billings-Gagliardi, S., Suva, M., and Wolf, M. K., 1976, Organotypic culture studies of myelin-deficient quaking mutant mice: A progress report, In Vitro 12: 321–322.Google Scholar
  28. Billings-Gagliardi, S., Adcock, L. H., Schwing, G. B., and Wolf, M. K., 1980, Hypomyelinated mutant mice. II. Myelination in vitro, Brain Res. 200: 135–150.PubMedCrossRefGoogle Scholar
  29. Bird, M., and James, D. W., 1975, Myelin formation in cultures of previously dissociated mouse spinal cord, Cell Tissue Res. 162: 93–105.PubMedCrossRefGoogle Scholar
  30. Blakemore, W. F., 1977, Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve, Nature (London) 266: 68–69.CrossRefGoogle Scholar
  31. Blank, N. K., Seil, F. J., and Herndon, R. M., 1980, Cytosine arabinoside induced ultrastructural alterations in developing cerebellum in tissue culture, J. Neuropathol. Exp. Neurol. 39: 341.CrossRefGoogle Scholar
  32. Bologa-Sandru, L., Siegrist, H. P., Z’Graggen, A., Hofmann, K., Weissman, U., Dahl, D., and Herschkowitz, J., 1981a, Expression of antigenic markers during the development of oligodendrocytes in mouse brain cell cultures, Brain Res. 210: 217–229.PubMedCrossRefGoogle Scholar
  33. Bologa-Sandru, L., Zalc, B., Herschkowitz, N., and Baumann, N., 1981 b, Oligodendrocytes of Jimpy mice express galactosylceramide: An immunofluorescence study on brain sections and dissociated brain cell cultures, Brain Res. 225: 425–430.Google Scholar
  34. Booe, I. M., Joseph, B. S., Walsh, M. J., Potvin, A. R., and Tourtellotte, W. W., 1980, Multiple sclerosis serum and cerebrospinal fluid immunoglobulin binding to Fc receptors of oligodendrocytes, Ann. Neurol. 9: 371–377.Google Scholar
  35. Booher, J., and Sensenbrenner, M., 1972, Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat, and human brain in flask cultures, Neurobiology 2: 97–105.PubMedGoogle Scholar
  36. Bornstein, M. B., 1958, Serial observations of growth patterns, myelin formation, maintenance and degeneration in cultures of newborn rat and kitten cerebellum, Anat. Rec. 130: 275.Google Scholar
  37. Bornstein, M. B., 1964, Morphological development of neonatal mouse cerebral cortex in tissue culture, in: Neurological and Electroencephalographic Correlative Studies in Infancy ( P. Kellaway and I. Peterson, eds.), pp. 1–10, Grune and Stratton, New York.Google Scholar
  38. Bornstein, M. B., 1973, Organotypic mammalian central and peripheral nervous tissue, in: Tissue Culture Methods and Applications ( P. F. Kruse, Jr., and M. K. Patterson, Jr., eds), pp. 86–92, Academic Press, New YorkGoogle Scholar
  39. Bornstein, M. B., and Appel, S. H., 1961, The application of tissue culture to the study of experimental “allergic” encephalomyelitis. I. Patterns of demyelination, J. Neuropathol. Exp. Neurol. 20: 141–157.CrossRefGoogle Scholar
  40. Bornstein, M. B., and Hummelgard, 1976, Multiple sclerosis: Serum induced demyelination in tissue culture, in: Etiology and Pathogenesis of the Demyelinatiog Diseases ( H. Shiraki, T. Yonezawa, and Y. Kuroiwa, eds.), pp. 341–350, Japan Science Press, Tokyo.Google Scholar
  41. Bornstein, M. B., and Model, P. G., 1972, Development of synapses and myelin in cultures of dissociated embryonic mouse spinal cord, medulla, and cerebrum, Brain Res. 37: 287–293.CrossRefGoogle Scholar
  42. Bornstein, M. B., and Murray, M. R., 1958, Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of newborn rat and kitten cerebellum, J. Biophys. Biochem. Cytol. 4: 499–505.PubMedCrossRefGoogle Scholar
  43. Bornstein, M. B., and Raine, C. S., 1970, Experimental allergic encephalomyelitis antiserum inhibition of myelination in vitro, Lab. Invest. 23: 536–542.PubMedGoogle Scholar
  44. Bornstein, M. B., and Raine, C. S., 1976, The initial structural lesion in serum-induced demyelination in vitro, Lab. Invest. 35: 391–401.PubMedGoogle Scholar
  45. Bornstein, M. B., and Raine, C. S., 1980, Antiserum-induced alterations of myelinogenesis in cultured CNS and PNS tissues, in: Tissue Culture in Neurobiology ( E. Giacobinni, A. Vernadakis, and A. Shahar, eds.), pp. 427–440, Raven Press, New York.Google Scholar
  46. Bottenstein, J., Hayashi, I., Hutchings, S., Masui, H., Mather, J., McClure, D. B., Ohasa, S., Rizzino, A., Sato, G., Serrero, G., Wolfe, R., and Wu, R., 1979, The growth of cells in serum-free hormone-supplemented media, in: Methods in Enzymology 58 ( W. B. Jakoby and I. H. Pastan, eds.), pp. 94–110, Academic Press, New York.Google Scholar
  47. Bourre, J.-M., Honegger, P., Daudu, O., and Matthieu, J.-M., 1979, The lipid composition of rat brain aggregating cell cultures during development, Neurosci. Lett. 11: 275–278.PubMedCrossRefGoogle Scholar
  48. Boyde, A., James, D. W., Tresman, R. L., and Willis, R. A., 1968, Outgrowth from chick embryo spinal cord in vitro studied with the scanning electron microscope, Z. Zellforsch. 90: 1–18.PubMedCrossRefGoogle Scholar
  49. Boyse, E. A., and Old, L. D., 1969, Some aspects of normal and abnormal cell surface genetics, Ann. Rev. Genetics 3: 269–290.CrossRefGoogle Scholar
  50. Bradbury, K., 1977, Myelin maturation: Evidence from organ cultures of cerebellum, Biochem. Soc. Trans. 5: 1775–1777.PubMedGoogle Scholar
  51. Bradbury, K., 1978, Abnormal myelin maturation in vitro: The role of cerebrosides, Adv. Exp. Med. Biol. 100: 171–178.PubMedCrossRefGoogle Scholar
  52. Bradbury, K., and Lumsden, C. E., 1979, The chemical composition of myelin in organ cultures of rat cerebellum, J. Neurochem. 32: 145–154.PubMedCrossRefGoogle Scholar
  53. Bray, G. M., Rasminsky, M., and Aguayo, A. J., 1981, Interactions between axons and their sheath cells, Annu. Rev. Neurosci. 4: 127–162.PubMedCrossRefGoogle Scholar
  54. Breen, G. A. M., and de Vellis, J., 1975, Regulation of glycerol phosphate dehydrogenase by hydrocortisone in rat brain explants, Exp. Cell Res. 91: 159–169.PubMedCrossRefGoogle Scholar
  55. Brockes, J. P., Fields, K. L., and Raff, M. C., 1977, A surface antigenic marker for rat Schwann cells, Nature (London) 266: 364–366.CrossRefGoogle Scholar
  56. Brockes, J. P., Fields, K. L., and Raff, M. C., 1979, Studies on cultured rat Schwann cells. I. Establishment of peripheral nerve, Brain Res. 165: 105–118.PubMedCrossRefGoogle Scholar
  57. Brockes, J. P., Lemke, G. E., and Balzer, D. R., Jr., 1980a, Purification and preliminary characterization of a glial growth factor from the bovine pituitary, J. Biol. Chem. 255: 83748377.Google Scholar
  58. Brockes, J. P., Raff, M. C., Nishiguchi, D. J., and Winter, J., 1980b, Studies on cultured rat Schwann cells. III. Assays for peripheral myelin proteins, J. Neurocytol. 9: 67–77.PubMedCrossRefGoogle Scholar
  59. Bunge, M. B., Bunge, R. P., and Pappas, G. D., 1962, Electron microscopic demonstrations of connection between glial and myelin sheath in the developing mammalian nervous system, J. Cell Biol. 12: 448–453.PubMedGoogle Scholar
  60. Bunge, M. B., Williams, A. K., Wood, P. M., Uitto, J., and Jeffrey, J. J., 1980, Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation, J. Cell Biol. 84: 184–202.PubMedCrossRefGoogle Scholar
  61. Bunge, R. P., 1968, Glial cells and the central myelin sheath, Physiol. Rev. 48: 197–251.PubMedGoogle Scholar
  62. Bunge, R. P., and Bunge, M. B., 1981, Cues and constraints in Schwann cell development, in: Studies in Developmental Neurobiology ( W. M. Cowan, ed.), pp. 322–353, Oxford University Press, Oxford.Google Scholar
  63. Bunge, R. P., and Wood, P., 1973, Studies of the transplantation of spinal cord tissue in the rat. I. The development of a culture system for hemisections of embryonic spinal cord, Brain Res. 57: 261–276.PubMedCrossRefGoogle Scholar
  64. Bunge, R. P., Bunge, M. B., and Peterson, E. R., 1965, An electron microscope study of cultured rat spinal cord, J. Cell Biol. 24: 163–191.PubMedCrossRefGoogle Scholar
  65. Campbell, G. Le M., Schachner, M., and Sharrow, S. O., 1977, Isolation of glial cell-enriched and -depleted populations from mouse cerebellum by density gradient centrifugation and electronic cell sorting, Brain Res. 127: 69–86.PubMedCrossRefGoogle Scholar
  66. Cantor, H., and Boyse, E. A., 1977, Regulation of the immune response by T cell sub-classes, Contemp. Top. Immunobiol. 7: 47–67.PubMedCrossRefGoogle Scholar
  67. Chernoff, G., March, E., and Miller, J. R.,1974, Mouse News Lett. 48: 24.Google Scholar
  68. Choi, B. H., and Lapham, B. W., 1974, Autoradiographic studies of migrating neurons and astrocytes of human fetal cerebral cortex in vitro, Exp. Mol. Pathol. 21: 204–217.PubMedCrossRefGoogle Scholar
  69. Cicero, T. J., Cowan, W. M., Moore, B. W., and Suntzeff, V., 1970, The cellular localization of the two brain specific proteins S–100 and 14–3–2, Brain Res. 18: 25 – 34.PubMedCrossRefGoogle Scholar
  70. Courtney, B., and Bassleer, R., 1967, Etude histoautoradiographique de l’incorporation de thymidine, d’uridine, et de leucine tritiées dans des cellules nerveuses d’embryon de poulet isolées et cultivées in vitro, C. R. Acad. Sci. Paris 264: 497–499.Google Scholar
  71. Crain, S. M., and Bornstein, M. B., 1972, Organotypic bioelectric activity in cultured reaggregates of dissociated rodent brain cells, Science 176: 182–184.PubMedCrossRefGoogle Scholar
  72. Davison, A. N., and Gregson, N. A., 1962, The physiological role of cerebron sulphuric acid (sulphatide) in the brain, Biochem. J. 85: 558–568.PubMedGoogle Scholar
  73. Delaunoy, J. P., Hog, F., Devilliers, G., Bansart, M., Mandel, P., and Sensenbrenner, M., 1980, Developmental changes and localization of carbonic anhydrase in cerebral hemispheres of the rat and in rat glial cell cultures, Cell. Mol. Biol. 26: 235–240.Google Scholar
  74. DeLong, G. R., 1970, Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures, Dev. Biol. 22: 563–583.PubMedCrossRefGoogle Scholar
  75. Detering, N. K., and Wells, M. A., 1976, The non-synchronous synthesis of myelin components during early stages of myelination in the rat optic nerve, J. Neurochem. 26: 253–257.PubMedCrossRefGoogle Scholar
  76. Detweiler, S. R., and Kehoe, K., 1939, Further observations on the origin of the sheath cells of Schwann, J. Exp. Zool. 81: 415–435.CrossRefGoogle Scholar
  77. DeVries, G., Salzer, J. L., and Bunge, R. P., 1982, Axolemma-enriched fractions isolated from PNS and CNS are mitogenic for cultured Schwann cells, Dev. Brain Res. 3: 295–299.CrossRefGoogle Scholar
  78. Diaz, M., Bornstein, M. B., and Raine, C. S., 1978, Disorganization of myelinogenesis in tissue culture by anti-CNS antiserum, Brain Res. 154: 231–239.PubMedCrossRefGoogle Scholar
  79. Dimpfel, W., Neale, J. H., and Haberman, E., 1975, Ilabelled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS, Naunyn-Schmiedeberg’s Arch. Exp. Pathol. Pharmakol. 290: 329–333.CrossRefGoogle Scholar
  80. Dimpfel, W., Huang, R. T. C., and Haberman, E., 1977, Gangliosides in nervous tissue cultures and binding of 1251-labelled tetanus toxin—a neuronal marker, J. Neurochem. 29: 329–334.PubMedCrossRefGoogle Scholar
  81. Dorfman, S., 1977, Perturbation of oligodendroglial function and myelination in vitro by myelination inhibition antisera, Diss. Abstr. Int. 38:03-B (Order no. AAD77–19842).Google Scholar
  82. Dorfman, S. H., Holtzer, H., and Silberberg, D. H., 1976, Effect of 5-bromo-2’-deoxyuridine or cytosine-iI-D-arabinofuranoside hydrochloride on myelination in newborn rat cerebellum cultures following removal of myelination inhibiting antiserum to whole cord or cerebroside, Brain Res. 104: 283–294.PubMedCrossRefGoogle Scholar
  83. Dorfman, S. H., Fry, J. M., Silberberg, D. H., Grose, C., and Manning, M. C., 1978, Cerebroside antibody titers in antiserums capable of myelination inhibition and demyelination, Brain Res. 147: 410–415.PubMedCrossRefGoogle Scholar
  84. Dorfman, S. H., Fry, J. M., and Silberberg, D. H., 1979, Antiserum induced myelination inhibition in vitro without complement, Brain Res. 177: 105–114.PubMedCrossRefGoogle Scholar
  85. Drummond, R. J., and Dean, G., 1980, Comparison of 2’,3’-cyclic nucleotide 3’-phosphodiesterase and the major component of Wolfgram protein W 1, J. Neurochem. 35: 1155–1165.PubMedCrossRefGoogle Scholar
  86. Eisenbarth, G. S., Walsh, F. S., and Nirenberg, M., 1979, Monoclonal antibody to a plasma membrane antigen of neurons, Proc. Natl. Acad. Sci. U.S.A. 76: 4913–4917.PubMedCrossRefGoogle Scholar
  87. Eng, L. F., Vanderhaeghen, J. J., Bignami, A., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocytes, Brain Res. 28: 351–354.PubMedCrossRefGoogle Scholar
  88. Eto, Y., and Suzuki, K., 1973, Cholesterol ester metabolism in rat brain, J. Biol. Chem. 268: 1986–1991.Google Scholar
  89. Everly, J. L., Brady, R. O., and Quarles, R. H., 1974, Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein, J. Neurochem. 21: 329–334.CrossRefGoogle Scholar
  90. Fagg, G. E., Schipper, H. I., and Neuhoff, V., 1979, Myelin protein composition in the rat spinal cord in culture and in vivo: A developmental comparison, Brain Res. 167: 251–258.PubMedCrossRefGoogle Scholar
  91. Farooq, M., Cammer, W., Synder, D. S., Raine, C. S., and Norton, W. T., 1981, Properties of bovine oligodendroglia isolated by a new procedure using physiologic conditions, J. Neurochem. 36: 431–440.PubMedCrossRefGoogle Scholar
  92. Fedoroff, S., 1977, Tracing glial cell lineages by colony formation in primary cultures, in: Cell, Tissue, and Organ Cultures in Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 215–221, Academic Press, New York.Google Scholar
  93. Fedoroff, S., 1978, The development of glial cells in primary cultures, in: Dynamic Properties of Glial Cells ( E. Schoffeniels, G. Franck, D. B. Tower, and L. Hertz, eds.), pp. 83–92, Pergamon Press, New York.Google Scholar
  94. Field, E. J., and Hughes, D., 1965, Toxicity of motor neuron disease serum for myelin in tissue culture, Br. Med. J. 2: 1399–1401.PubMedCrossRefGoogle Scholar
  95. Field, E. J., and Hughes, D., 1969, A comparison of toxicity of serum from multiple sclerosis and motor neurone disease on myelin in vitro, Int. Arch. Allergy Appl. Immunol. 36 (Suppl.): 563–567.PubMedGoogle Scholar
  96. Field, E. J., Hughes, D., and Raine, C. S., 1968, Electron microscopic observations on the development of myelin in cultures of neonatal rat cerebellum, J. Neurol. Sci. 8: 49–60.CrossRefGoogle Scholar
  97. Fields, K. L., 1979, Cell-type specific antigens of cells of the central nervous system and peripheral nervous system, Curr. Topics Dev. Biol. 13 (1): 237–257.CrossRefGoogle Scholar
  98. Fields, K. L., Gosling, C., Megson, M., and Stern, P. L., 1975, New cell surface antigens in rat defined by tumors of the nervous system, Proc. Natl. Acad. Sci. U.S.A. 72: 1286–1300.CrossRefGoogle Scholar
  99. Fields, K. L., Brockes, J. P., Mirsky, R., and Wendon, L. M. B., 1978, Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture, Cell 14: 43–51.PubMedCrossRefGoogle Scholar
  100. Fry, J. M., Lehrer, G. M., and Bornstein, M. R., 1972, Sulfatide synthesis: Inhibition by experimental allergic encephalomyelitis serum, Science 175: 192–194.PubMedCrossRefGoogle Scholar
  101. Fry, J. M., Lehrer, G. M., and Bornstein, M. B., 1973, Experimental inhibition of myelination in spinal cord cultures: Enzyme assays, J. Neurobiol. 4: 453–459.PubMedCrossRefGoogle Scholar
  102. Fry, J. M., Weissbarth, S., Lehrer, G. M., and Bornstein, M. B., 1974, Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelinates in cord tissue cultures, Science 183: 540–542.PubMedCrossRefGoogle Scholar
  103. Fryell, K. J., 1980, Synthesis of sulfatide by cultured rat Schwann cells, J. Neurochem. 35: 1461–1464.CrossRefGoogle Scholar
  104. Garber, B., 1967, Aggregation in vivo of dissociated cells. I. Role of developmental age in tissue reconstruction, J. Exp. Zool. 164: 339–350.PubMedCrossRefGoogle Scholar
  105. Gebicke-Harter, P. J., Althaus, H.-H., Schwartz, P., and Neuhoff, V., 1981, Oligodendrocytes from postnatal cat brain in cell culture. I. Regeneration and maintenance, Dev. Brain Res. 1: 497–518.CrossRefGoogle Scholar
  106. Geiger, R. S., 1963, The behavior of adult mammalian brain cells in culture, Int. Rev. Neurobiol. 5: 1–52.PubMedCrossRefGoogle Scholar
  107. Geren, B. B., 1954, The formation of myelin from the Schwann cell surface of myelin in the peripheral nerves of chick embryos, Exp. Cell Res. 7: 558–562.CrossRefGoogle Scholar
  108. Gospodarowicz, D., and Moran, J. S., 1976, Growth factors in mammalian cell culture, Annu. Rev. Biochem. 45: 531–558.PubMedCrossRefGoogle Scholar
  109. Gould, R. M., Matsumoto, D., and Mattingly, G., 1982, The Schwann cell, in: Handbook of Neurochemistry, Vol. 1, 2nd ed. ( A. Lajtha, ed.), pp. 397–414, Plenum Press, New York.Google Scholar
  110. Graham, F. L., and Whitmore, G. F., 1970, The effect of 1–0-o-arabinofuranosylcytosine on growth, viability, and DNA synthesis of mouse L-cells, Cancer Res. 30: 2627–2635.PubMedGoogle Scholar
  111. Grosse, G., and Lindner, G., 1970, Untersuchungen zur Differenzierung isolierter Nerven and Gliazellen des zentralnervösen Gewebes von Hühnerembryonen in der Zellkultur, J. Hirnforsch. 12: 207–215.PubMedGoogle Scholar
  112. Grosse, G., and Lindner, G., 1972, Untersuchungen zur Differenzierung disaggregierter Zellen des Telencephalon von Hühnerembryo in Langzeit Zellkulturen, Z. Mikrosk. Anat. Forsch. Leipzig 85: 438–448.Google Scholar
  113. Grundke-lqbal, I., and Bornstein, M. B., 1979, Multiple sclerosis: Immunochemical studies on the demyelinating serum factor, Brain Res. 160: 489–503.CrossRefGoogle Scholar
  114. Grundke-Iqbal, I., Raine, C. S., Johnson, A. B., Brosnan, C. F., and Bornstein, M. B., 1981, Experimental allergic encephalomyelitis—characterization of serum factors causing demyelination and swelling of myelin, J. Neurol. Sci. 50: 63–79.PubMedCrossRefGoogle Scholar
  115. Hamburgh, M., 1966, Evidence for a direct effect of temperature and thyroid hormone on myelinogenesis in vitro, Dev. Biol. 13: 15–30.PubMedCrossRefGoogle Scholar
  116. Hamburgh, M., and Bunge, R. P., 1964, Evidence for a direct effect of thyroid hormone on maturation of nervous tissue grown in vitro, Life Sci. 3: 1423–1430.PubMedCrossRefGoogle Scholar
  117. Hanson, G. R., Iverson, P. L., and Partlow, L. M., 1982a, Preparation and partial characterization of highly purified primary cultures of neurons and non-neuronal (glial) cells from embryonic chick cerebral hemispheres and several other regions of the nervous system, Dev. Brain Res. 3: 529–545.CrossRefGoogle Scholar
  118. Hanson, G. R., Partlow, L. M., and Iverson, P. L., 1982b, Neuronal stimulation of non-neuronal (glial) cell proliferation: Lack of specificity between different regions of the nervous system, Dev. Brain Res. 3: 547–555.CrossRefGoogle Scholar
  119. Hansson, H. A., and Sourander, P., 1964, Studies on cultures of mammalian retina, Z. Zell-forsch. 62: 26–47.CrossRefGoogle Scholar
  120. Hansson, E., Sellstrom, A., Persson, L. I., and Ronnback, L., 1980, Brain primary culture—a characterization, Brain Res. 188: 233–246.PubMedCrossRefGoogle Scholar
  121. Harrison, B. M., 1980, Remyelination by cells introduced into a stable demyelinating lesion in the central nervous system, J. Neurol. Sci. 46: 63–81.PubMedCrossRefGoogle Scholar
  122. Harrison, R. G., 1924, Neuroblast versus sheath cell in the development of peripheral nerves, J. Comp. Neurol. 37: 123–205.CrossRefGoogle Scholar
  123. Hartman, B. K., Agrawal, H. C., Kalmbach, S., and Shearer, W. T., 1979, A comparative study of the immunocytochemical localization of basic protein to myelin and oligodendrocytes in rat and chicken brain, J. Comp. Neurol. 188: 273–290.PubMedCrossRefGoogle Scholar
  124. Haugen, A., and Laerum, O. D., 1978, Induced glial differentiation of fetal rat brain cells in culture: An ultrastructural study, Brain Res. 150: 225–238.PubMedCrossRefGoogle Scholar
  125. Hauw, J.-J., Boutry, J.-M., Crosnier-Smith, N., and Robineau, R., 1974, Morphology of cultured guinea pig cerebellum, Cell Tissue Res. 152: 141–164.PubMedCrossRefGoogle Scholar
  126. Hauw, J.-J., Boutry, J.-M., and Jacque, C., 1980, Tissue culture study of the shiverer mutant mouse: Preliminary results, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 475–480, Elsevier/North-Holland, Amsterdam.Google Scholar
  127. Henn, F. A., 1980, Separation of neuronal and glial cells and subcellular constituents, in: Advances in Cellular Neurobiology ( S. Federoff and L. Hertz, eds.), pp. 373–403, Academic Press, New York.Google Scholar
  128. Hild, W., 1957, Myelinogenesis in cultures of mammalian central nervous tissue, Z. Zellforsch. 46: 71–95.PubMedCrossRefGoogle Scholar
  129. Hild, W., 1963a, Myelin formation around central neurons in vitro, Tex. Rep. Biol. Med. 21: 207–213.Google Scholar
  130. Hild, W., 1963b, Myelinogenesis in cultures of mammalian central nervous tissue, Z. Zellforsch. 46: 71–85.CrossRefGoogle Scholar
  131. Hild, W., 1966, Cell types and neuronal connections in cultures of mammalian central nervous tissue, Z. Zellforsch. 69: 155–188.PubMedCrossRefGoogle Scholar
  132. Hild, W., and Tasaki, I., 1962, Morphological and physiological properties of neurons and glial cells in tissue culture, J. Neurophysiol. 25: 277–304.PubMedGoogle Scholar
  133. Hirano, A., 1968, A confirmation of the oligodendroglial origin of myelin in the adult rat, J. Cell Biol. 38: 637–640.PubMedCrossRefGoogle Scholar
  134. Hirose, G., and Bass, N. H., 1973, Maturation of oligodendroglia and myelinogenesis in rat optic nerve: A quantitative histochemical study, J. Comp. Neurol. 152: 201–210.PubMedCrossRefGoogle Scholar
  135. Hogue, M. J., 1953, A study of adult human brain cells grown in tissue culture, Am. J. Anat. 93: 397–427.PubMedCrossRefGoogle Scholar
  136. Holtzer, H., 1970, Myogenesis, in: Cell Differentiation ( O. Schjeide and J. de Vellis, eds.), pp. 476–503, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  137. Holtzer, H., Weintraub, H., Mayne, R., and Mochan, B., 1972, The cell cycle, cell lineages, and cell differentiation, Curr. Top. Dev. Biol. 7: 229–256.PubMedCrossRefGoogle Scholar
  138. Honegger, P., and Matthieu, J.-M., 1980, Myelination of aggregating fetal rat brain cell cultures grown in a chemically defined medium, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 481–488, Elsevier/North-Holland, Amsterdam.Google Scholar
  139. Honegger, P., and Richelson, E., 1976, Biochemical differentiation of mechanically dissociated mammalian brain in aggregating cell culture, Brain Res. 109: 335–354.PubMedCrossRefGoogle Scholar
  140. Honegger, P., Lenoir, D., and Favrod, P., 1979, Growth and differentiation of aggregating fetal brain cells in a serum-free defined medium, Nature (London) 282: 305–308.CrossRefGoogle Scholar
  141. Hruby, S., Alvord, E. C., Jr., and Seil, F. J., 1977, Synthetic galactocerebrosides evoke myelination-inhibiting antibodies, Science 195: 173–175.PubMedCrossRefGoogle Scholar
  142. Hugosson, R., Kallen, B., and Nilsson, O., 1968, Neuroglia proliferation studied in tissue culture, Acta Neuropathol. 11: 210–220.PubMedGoogle Scholar
  143. Imamoto, K., Paterson, J. A., and Leblond, C. P., 1978, Radioautographic investigation of gliogenesis in the corpus callosum of young rats, I. Sequential changes in oligodendrocytes, J. Comp. Neurol. 180: 115–138.PubMedCrossRefGoogle Scholar
  144. Jacobson, M., 1978, Developmental Neurobiology, pp. 166–180, Plenum Press, New York.CrossRefGoogle Scholar
  145. Johnson, A. B., and Bornstein, M. B., 1978, Myelin-binding antibodies in vitro—Immunoperoxidase studies with experimental allergic encephalomyelitis, anti-galactosylcerebroside and multiple sclerosis sera, Brain Res. 159: 173–182.PubMedCrossRefGoogle Scholar
  146. Johnson, A. B., Raine, C. S., and Bornstein, M. B., 1979, Experimental allergic encephalomyelitis: Serum immunoglobulin binds to myelin and oligodendrocytes in cultured tissueultrastructural immunoperoxidase observations, Lab. Invest. 40: 568–575.PubMedGoogle Scholar
  147. Kennedy, P. G. E., and Lisak, R. P., 1980, Astrocytes and oligodendrocytes in dissociated cell culture of adult rat optic nerve, Neurosci. Lett. 16: 229–233.PubMedCrossRefGoogle Scholar
  148. Kennedy, P. G. E., Lisak, R. P., and Raff, M. C., 1980, Cell type-specific markers for human glial and neuronal cells in culture, Lab. Invest. 43: 342–351.PubMedGoogle Scholar
  149. Kies, M. W., Driscoll, B. F., Seil, F. J., and Alvord, E. C., Jr., 1973, Myelination inhibition factor: Dissociation from induction of experimental allergic encephalomyelitis, Science 179: 689–690.PubMedCrossRefGoogle Scholar
  150. Kim, S. U., 1970, Observations on cerebellar granule cells in tissue culture: A silver and electron microscopic study, Z. Zellforsch. 107: 454–465.PubMedCrossRefGoogle Scholar
  151. Kim, S. U., 1971, Electron microscopic study of mouse cerebellum in tissue culture, Exp. Neurol. 33: 237–246.CrossRefGoogle Scholar
  152. Kim, S. U., 1972, Formation of synapses and myelin sheaths in cultures of dissociated chick spinal cord, Exp. Cell Res. 73: 528–530.PubMedCrossRefGoogle Scholar
  153. Kim, S. U., 1975, Effects of cholesterol biosynthesis inhibitor AY9944 on organotypic cultures of mouse spinal cord: Retarded myelinogenesis and induction of cytoplasmic inclusions, Lab. Invest. 32: 720–728.PubMedGoogle Scholar
  154. Kim, S. U., 1976, Effect of serum deprivation on myelinating mouse cerebellum cultures, J. Neurosci. Res. 2: 309–316.PubMedCrossRefGoogle Scholar
  155. Kim, S. U., and Pleasure, D. E., 1978, Tissue culture analysis of neurogenesis: Myelination and synapse formation are retarded by serum deprivation, Brain Res. 145: 15–25.PubMedCrossRefGoogle Scholar
  156. Kim, S. U., and Pleasure, D. E., 1980, Tissue culture of Jimpy and Quaking mouse mutants, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 453–459, Elsevier/North-Holland, Amsterdam.Google Scholar
  157. Kim, S. U., and Tanaka, Y., 1971, Myelinated neuronal soma in organized tissue culture of mouse central nervous tissue, Exp. Neurol. 30: 190–193.PubMedCrossRefGoogle Scholar
  158. Kim, S., and Tunnicliff, G., 1974, Morphological and biochemical development of chick cerebrum cultured in vitro, Exp. Neurol. 43: 515–526.PubMedCrossRefGoogle Scholar
  159. Kim, S. U., Oh, T. H., and Johnson, D. D., 1972, Developmental changes of acetylcholinesterase and pseudocholinesterase in organotypic cultures of spinal cord, Exp. Neurol. 35: 274–281.PubMedCrossRefGoogle Scholar
  160. Kohler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumour lines by cell fusion, Eur. J. Immunol. 6: 511–519.PubMedCrossRefGoogle Scholar
  161. Korinkova, P., and Lodin, Z., 1977, A transitional differentiation of glial cells of cultured corpus callosum caused by dibutyryl cyclic adenosine monophosphate, Neuroscience 2: 1113–1114.Google Scholar
  162. Kozak, L. P., 1977, The transition from embryonic to adult isozyme expression in reaggregating cell cultures of mouse brain, Dev. Biol. 55: 160–169.PubMedCrossRefGoogle Scholar
  163. Kozak, L. P., Eppig, J. J., Dahl, D., and Bignami, A., 1977, Ultrastructural and immunohistological characterization of a cell culture model for the study of neuronal—glial interactions, Dey. Biol. 59: 206–227.CrossRefGoogle Scholar
  164. Labourdette, G., Roussel, G., Ghandour, M. S., and Nussbaum, J. L., 1979, Cultures from rat brain hemispheres enriched in oligodendrocyte-like cells, Brain Res. 179: 199–203.PubMedCrossRefGoogle Scholar
  165. Labourdette, G., Roussel, G., and Nussbaum, J. L., 1980, Oligodendroglia content of glial cell primary cultures, from newborn rat brain hemispheres, depends on the initial plating density, Neurosci. Lett. 18: 203–209.PubMedCrossRefGoogle Scholar
  166. Latovitzki, N., and Silberberg, D. H., 1973, Quantification of galactolipids in myelinating cultures of rat cerebellum, J. Neurochem. 20: 1771–1776.PubMedCrossRefGoogle Scholar
  167. Latovitzki, N., and Silberberg, D. H., 1975, Ceramide glycosyltransferase in cultured rat cerebellum: Changes with age, with demyelination, and with inhibition of myelination by 5bromo-2’-deoxyuridine or experimental allergic encephalomyelitis serum, J. Neurochem. 24: 1017–1021.PubMedCrossRefGoogle Scholar
  168. Latovitzki, N., and Silberberg, N., 1977, UDP-galactose:ceramide galactosyltransferase and 2’,3’-cyclic nucleotide 3’-phosphohydrolase activities in cultured newborn cerebellum: Association with myelination and concurrent susceptibility to 5-bromodeoxy-uridine, J. Neurochem. 29: 611–614.PubMedCrossRefGoogle Scholar
  169. Lebar, R., Boutry, J. M., Vincent, C. H., Robineaux, R., and Voisin, G. A., 1976, Studies on autoimmune encephalomyelitis in the guinea pig. II. An in vitro investigation of the nature, properties and specificity of the serum demyelinating factor, J. Immunol. 116: 1439–1446.PubMedGoogle Scholar
  170. Lehrer, G. M., 1973, The tissue culture as a model for the biochemistry of brain development, in: Progress in Brain Research, Vol. 40, Neurological Aspects of Maturating and Aging ( D. H. Ford, ed.), pp. 219–230, Elsevier, Amsterdam.CrossRefGoogle Scholar
  171. Lehrer, G. M., and Bornstein, M. R., 1968, Glucose metabolism in rat cerebellum tissue cultures as a function of age, Trans. Am. Neurol. Assoc. 93: 174–176.PubMedGoogle Scholar
  172. Lehrer, G. M., Bornstein, M. B., Weiss, C., and Silides, D. J., 1970a, Enzymatic maturation of mouse cerebral neocortex in vitro and in situ, Exp. Neurol. 26: 595–606.PubMedCrossRefGoogle Scholar
  173. Lehrer, G. M., Bornstein, M. B., Weiss, C., Furnam, M., and Lichtman, C., 1970b, Enzymes of carbohydrate metabolism in the rat cerebellum developing in situ and in vivo, Exp. Neurol. 27: 410–425.PubMedCrossRefGoogle Scholar
  174. Levi-Montalcini, R., 1966, The nerve growth factor: Its mode of action on sensory and sympathetic nerve cells, Harvey Lect. 60: 217–259.PubMedGoogle Scholar
  175. Lilien, J. E., 1968, Specific enhancement of cell aggregation in vitro, Dev. Biol. 17: 657–678.PubMedCrossRefGoogle Scholar
  176. Lim, R., Turriff, D. E., Troy, S. S., and Kato, T., 1977, Differentiation of glioblasts under the influence of glia maturation factor, in: Cell, Tissue, and Organ Cultures in Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 223–235, Academic Press, New York.Google Scholar
  177. Lisak, R. P., Pleasure, D. E., Silberberg, D. H., Manning, M. C., and Saida, T., 1981, Longterm culture of bovine oligodendroglia isolated with a Percoll gradient, Brain Res. 223: 107122.Google Scholar
  178. Lodin, Z., Korinkova, P., Falton, J., and Fleischmannova, V., 1978a, Structure and ultrastructure of cultured glial cells from corpus callosum, Acta Histochem. 61: 165–183.PubMedCrossRefGoogle Scholar
  179. Lodin, Z., Korinkova, P., Falton, J., and Fleischmannova, V., 1978b, Differentiation of corpus callosum glial cells and factors influencing their maturation in vitro, Acta Histochem. 61: 184–191.PubMedCrossRefGoogle Scholar
  180. Lumsden, C. E., 1965, The clinical pathology of multiple sclerosis, in: Multiple Sclerosis, A Reappraisal ( D. McAlpine, C. E. Lumsden, and E. D. Acheson, eds.), pp. 243–263, Livingstone, Edinburgh.Google Scholar
  181. Lumsden, C., and Pomerat, C., 19651, Normal oligodendrocytes in tissue culture: A preliminary report on the pulsatile glial cells in tissue culture from the corpus callosum of the normal adult rat brain, Exp. Cell Res. 2: 103–114.Google Scholar
  182. Mack, S. R., and Szuchet, S., 1981, Synthesis of myelin glycosphingolipids by isolated oligodendrocytes in tissue culture, Brain Res. 214: 180–185.PubMedCrossRefGoogle Scholar
  183. Mack, S. R., Szuchet, S., and Dawson, G., 1981, Synthesis of gangliosides by cultured oligodendrocytes, J. Neurosci. Res. 6: 361–368.PubMedCrossRefGoogle Scholar
  184. Macklin, W. B., and Pfeiffer, S. E., 1983, Myelin proteolipid protein time course in rat primary cultures of fetal rat brain, Trans. Am. Soc. Neurochem. 14: 212.Google Scholar
  185. Manthorpe, M., Skaper, S., and Varon, S., 1980, Purification of mouse Schwann cells using neurite-induced proliferation in serum-free monolayer culture, Brain Res. 196: 467–482.PubMedCrossRefGoogle Scholar
  186. Manuelidis, L., and Manuelidis, E. E., 1971, An autoradiographic study of the proliferation and differentiation of glial cells in vitro, Acta Neuropathol. 18: 193–213.PubMedCrossRefGoogle Scholar
  187. Matthieu, J.-M., and Honegger, P., 1979, An in vitro model to study brain development: Brain aggregating cell cultures, in: Models for the Study of Inborn Errors of Metabolism ( F. A. Hommes, ed.), pp. 259–277, Elsevier/North-Holland, Amsterdam.Google Scholar
  188. Matthieu, J.-M., Honegger, P., Trapp, B. D., Cohen, S. R., and Webster, H. de F., 1978, Myelination in rat brain aggregating cell cultures, Neuroscience 3: 565–572.PubMedCrossRefGoogle Scholar
  189. Matthieu, J. M., Honeggar, P., Favrod, P., Gautier, E., and Dolvio, M., 1979, Biochemical characterization of a myelin fraction isolated from rat brain aggregating cell cultures, J. Neurochem. 32: 869–881.PubMedCrossRefGoogle Scholar
  190. Matthieu, J.-M., Honegger, P., Favrod, P., Poduslo, J. F., Costantino-Ceccarini, E., and Krstic, R., 1980, Myelination and demyelination in aggregating cultures of rat brain cells, in: Tissue Culture in Neurobiology ( E. Giacobini, A. Vernadakis, and A. Shahar, eds.), pp. 441–459, Raven Press, New York.Google Scholar
  191. Maturana, H. R., 1960, The fine anatomy of the optic nerve of Anurans—an electron microscopic study, J. Biophys. Biochem. Cytol. 7: 107–120.PubMedCrossRefGoogle Scholar
  192. McCarthy, K. D., and de Vellis, J., 1978, Alpha-adrenergic receptor modulation of beta-adrenergic, adenosine and prostaglandin E1 increased adenosine 3’-5’-cyclic monophosphate levels in primary cultures of glia, J. Cyclic Nucleotide Res. 4: 15–26.PubMedGoogle Scholar
  193. McCarthy, K. D., and de Vellis, J., 1980, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol. 85: 890–892.PubMedCrossRefGoogle Scholar
  194. McDermott, J. R., and Smith, A. R., 1978, Absence of myelin basic protein from glial cell lines and cultures, J. Neurochem. 30: 1637–1639.PubMedCrossRefGoogle Scholar
  195. McKhann, G. M., and Ho, W., 1967, The in vivo and in vitro synthesis of sulphatides during development, J. Neurochem. 14: 717–724.PubMedCrossRefGoogle Scholar
  196. McMorris, F. A., 1977, Norepinephrine induces glial-specific enzyme activity in cultured glioma cells, Proc. Natl. Acad. Sci. U.S.A. 74: 4501–4504.PubMedCrossRefGoogle Scholar
  197. McMorris, F. A., Miller, S. L., Pleasure, D., and Abramsky, O., 1981, Expression of biochemical properties of oligodendrocytes in oligodendrocyte glioma cell hybrids proliferating in vitro, Exp. Cell Res. 133: 395–404.PubMedCrossRefGoogle Scholar
  198. Meier, H., and MacPike, A. D., 1970, A neurological mutation (msd) of the mouse causing a deficiency of myelin synthesis, Exp. Brain Res. 10: 512–525.PubMedCrossRefGoogle Scholar
  199. Mikoshiba, K., Nagaike, K., Aoki, E., and Tsukada, Y., 1979, Biochemical and immunohistochemical studies on dysmyelination of quaking mutant mice in vivo and in vitro, Brain Res. 177: 287–299.PubMedCrossRefGoogle Scholar
  200. Mikoshiba, K., Nagaike, K., Takamatsu, K., and Tsukada, Y., 1980, Developmental change of 2’,3’-cyclic nucleotide 3’-phosphohydrolase activity in the nervous system of the Shiverer mutant mice in vivo and in vitro, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 349–354, Elsevier/North, Holland, Amsterdam.Google Scholar
  201. Mirsky, R., and Thompson, E. J., 1975, Thy-1 (theta) antigen on the surface of morphologically distinct brain cell types, Cell 4: 95–101.PubMedCrossRefGoogle Scholar
  202. Mirsky, R., Wendon, L. M. B., Black, P., Stolkin, C., and Bray, D., 1978, Tetanus toxin: A cell surface marker for neurones in culture, Brain Res. 148: 251–259.PubMedCrossRefGoogle Scholar
  203. Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J., and Raff, M. C., 1980, Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture, J. Cell Biol. 84: 483–494.PubMedCrossRefGoogle Scholar
  204. Mitrova, E., 1967, Karyometric investigation of glia cells in the cerebellum in the course of myelination, Z. Mikrosk. Anat. Forsch. 77: 304–312.PubMedGoogle Scholar
  205. Moore, B. W., 1965, A soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Commun. 19: 739–744.PubMedCrossRefGoogle Scholar
  206. Morel!, P., and Norton, W. T., 1980, Myelin, Sci. Am. 242 (5): 88–118.CrossRefGoogle Scholar
  207. Mori, S., and Leblond, C. P., 1970, Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats, J. Comp. Neurol. 139: 1–30.PubMedCrossRefGoogle Scholar
  208. Morris, R. J., 1982, The surface antigens of nerve cells, in: Neuroscience Approached through Cell Culture, Vol I ( S. E. Pfeiffer, ed.), pp. 1–80, CRC Press, Boca Raton, Florida.Google Scholar
  209. Moscona, A. A., 1965a, Rotation-mediated histogenetic aggregation of dissociated cells, Exp. Cell Res. 22: 455–475.CrossRefGoogle Scholar
  210. Moscona, A. A., 1965b, Recombination of dissociated cells and the development of cell aggregates, in: Cells and Tissues in Culture, Vol. 1 ( E. N. Willmer, ed.) pp. 489–529, Academic Press, New York.Google Scholar
  211. Moscona, A. A., 1968, Cell aggregation: Properties of specific cell-ligands and their role in the formation of multicellular systems, Dev. Biol. 18: 250–277.PubMedCrossRefGoogle Scholar
  212. Murray, M. R., 1959, Factors bearing on myelin formation in vitro, in: Progress in Neurobiology, Vol. IV, The Biology of Myelin ( S. R. Korey and J. I. Nurnberger, eds.), pp. 201–221, Hoeber, New York.Google Scholar
  213. Murray, M. R., 1964, Myelin formation and neuron histogenesis in tissue culture, in: Comparative Neurochemistry ( D. Richter, ed.), pp. 49–61, Pergamon Press, London.Google Scholar
  214. Murray, M. R., 1965, Nervous tissue in vitro, in: Cells and Tissues in Culture, Vol. 2 ( E. N. Willmer, ed.), pp. 373–455, Academic Press, New York.Google Scholar
  215. Murray, M. R., 1971, Nervous tissues isolated in culture, in: Handbook of Neurochemistry, Vol. 5A ( A. Lajtha, ed.), pp. 373–438, Plenum Press, New York.Google Scholar
  216. Murray, M. R., 1977, Introduction, in: Cell, Tissue, and Organ Cultures in Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 1–8, Academic Press, New York.Google Scholar
  217. Murray, M. R., Peterson, E. R., and Bunge, R. P., 1962, Some nutritional aspects of myelin sheath formation in cultures of central and peripheral nervous system, in: Proceedings of the Fourth International Congress on Neuropathology, Vol. II ( H. Jacob, ed.), pp. 267–272, Georg Thieme, Stuttgart.Google Scholar
  218. Nadler, N. J., 1978, Kinetics of oligodendrocytes in growing rats, J. Comp. Neurol. 180: 129–131.PubMedGoogle Scholar
  219. Nagata, Y., and Tsukada, Y., 1978, Bulk separation of neuronal cell bodies and glial cells from mammalian brain and some of their biochemical properties, Rev. Neurosci. 3: 195–221.Google Scholar
  220. Nixon, R. A., Suva, M., and Wolf, M. K., 1976, Neurotoxicity of a non-metabolizable amino acid, I-aminocyclopentane-1-carboxylic acid: Antagonism by amino acids in cultures of cerebellum, J. Neurochem. 27: 245–251.PubMedCrossRefGoogle Scholar
  221. Noel-Courtney, B., and Heinen, E., 1977, Observations en microscope électronique à balayage de cellules nerveuses de moelle spinal d’embryons de poulet cultivées in vitro sur la polylysine-L, C. R. Acad. Sci. Paris 285: 385–387.Google Scholar
  222. Norenberg, M. D., and Martinez-Hernandez, A., 1979, Fine structural localization of glutamine synthetase in astrocytes of rat brain, Brain Res. 161: 303–310.PubMedCrossRefGoogle Scholar
  223. Norton, W. T., 1983, Recent advances in the neurobiology of oligodendroglia, in: Advances in Cellular Neurobiology, Vol. 4 ( S. Fedoroff and L. Hertz, eds.), pp. 3–55, Academic Press, New York.Google Scholar
  224. Nussbaum, J. L., Delaunoy, J. P., and Mandel, P., 1977, Some immunochemical characteristics of W1 and W2 Wolfgram proteins isolated from rat brain myelin, J. Neurochem. 28: 183–191.PubMedCrossRefGoogle Scholar
  225. Orr, M. F., 1968, Histogenesis of sensory epithelium in reaggregates of dissociated embryonic chick otocysts, Dev. Biol. 17: 39–54.PubMedCrossRefGoogle Scholar
  226. Parkhouse, R. M. E., and Cooper, M. D., 1977, A model for the differentiation of B lymphocytes with implications for the biological role of IgD, Immunol. Rev. 37: 105–126.PubMedCrossRefGoogle Scholar
  227. Paterson, J. A., Privat, A., Ling, E. A., and Leblond, C. P., 1973, Investigation of glial cells in semithin sections. III. Transformation of subependymal cells into glial cells, as shown by radioautography after 3H-thymidine injection into the lateral ventricle of the brain of young rats, J. Comp. Neurol. 149: 83–102.PubMedCrossRefGoogle Scholar
  228. Perier, 0., 1959, Formation de la myelin in vitro en rapport avec les maladies demyelinisantes, Acta Neurol. Belg. 6: 747–755.Google Scholar
  229. Peters, A., 1960, The formation and structure of myelin sheaths in the central nervous system, J. Biophys. Biochem. Cytol. 8: 431–446.PubMedCrossRefGoogle Scholar
  230. Peters, A., 1964, Observations on the connections between myelin sheaths and glial cells in the optic nerves of young rats, J. Anat. (London) 98: 125–134.Google Scholar
  231. Peters, A., Palay, S. L., and Webster, H. de F., 1976, The Fine Structure of the Nervous System: The Cells and Their Processes, W. B. Saunders, Philadelphia.Google Scholar
  232. Peterson, E. R., 1950, Production of myelin sheaths in vitro by embryonic spinal ganglion cells, Anat. Rec. 106: 232.Google Scholar
  233. Peterson, E. R., and Murray, M. R., 1955a, Myelin sheath formation in cultures of avian spinal ganglia, Am. J. Anat. 96: 319–356.PubMedCrossRefGoogle Scholar
  234. Peterson, E. R., and Murray, M. R., 1955b, Patterns of peripheral demyelination in vitro, Ann. N. Y. Acad. Sci. 122: 39–50.CrossRefGoogle Scholar
  235. Peterson, E. R., and Murray, M. R., 1960, Modification of development in isolated dorsal root ganglia by nutritional and physical factors, Dev. Biol. 2: 461–476.PubMedCrossRefGoogle Scholar
  236. Peterson, E. R., Crain, S. M., and Murray, M. R., 1965, Differentiation and prolonged maintenance of bioelectrically active spinal cord cultures (rat, chick, and human), Z. Zellforsch. 66: 130–154.PubMedCrossRefGoogle Scholar
  237. Pettman, B., Delanoy, J. P., Couraget, J., Devilliers, G., and Sensenbrenner, M., 1980, Rat brain glial cells in culture: Effect of brain extracts on the development of oligodendroglia-like cells, Dev. Biol. 75: 278–287.CrossRefGoogle Scholar
  238. Pfeiffer, S. E., Betchart, B., Cook, J., Mancini, P., and Morris, R., 1977, Glial cell lines, in: Cell, Tissue, and Organ Cultures in Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 287–346, Academic Press, New York.Google Scholar
  239. Pfeiffer, S. E., Barbarese, E., and Bhat, S., 1981a, Glial cell lines, in: Functionally Differentiated Cell Lines ( G. Sato, ed.), pp. 141–154, Alan R. Liss, New York.Google Scholar
  240. Pfeiffer, S. E., Barbarese, E., and Bhat, S., 1981 b, Non-coordinate regulation of myelinogenic parameters in primary cultures of dissociated fetal rat brain, J. Neurosci. Res. 6: 369–380.Google Scholar
  241. Phillips, R. J. S., 1954, Jimpy, a new totally sex-linked gene in the house mouse, Z. Vererbungsl. 86: 322–326.Google Scholar
  242. Pieringer, R. A., Campbell, G. Le M., Bhat, N. R., Subba Rao, G., and Sarlieve, L. L., 1980, Biochemical, morphological, and regulatory aspects of myelination in cultures of dissociated brain cells from embryonic mice, in: Cell Surface Glycolipids (C. S. Sweeley, ed.), pp. 303–319, American Chemical Society Symposium Series 128, Washington, D.C.Google Scholar
  243. Piper, R., 1962, Microtomy techniques and the problem of relation of cell outgrowth to events within expiants in vitro, J. Med. Lab. Technol. 19: 1–18.Google Scholar
  244. Pleasure, D. E., and Kim, S. U., 1976a, Sterol synthesis by myelinating cultures of mouse spinal cord, Brain Res. 103: 117–126.PubMedCrossRefGoogle Scholar
  245. Pleasure, D. E., and Kim, S. U., 1976b, Enzyme markers for myelination of mouse cerebellum in vivo and in tissue culture, Brain Res. 104: 193–196.PubMedCrossRefGoogle Scholar
  246. Pleasure, D. E., Towfighi, J., Silberberg, D., and Parris, J., 1974, The pathogenesis of hexachlorophene neuropathy: In vivo and in vitro studies, Neurology 21: 1068–1075.CrossRefGoogle Scholar
  247. Pomerat, C. M., 1951, Pulsatile activity of cells from the human brain in tissue culture, J. Nerv. Ment. Dis. 114: 430–449.Google Scholar
  248. Pomerat, C. M., 1958, Functional concepts based on tissue culture studies of neuroglia cells, in: Biology of Neuroglia ( W. F. Windle, ed.), pp. 162–175, Charles C. Thomas, Springfield, Illinois.Google Scholar
  249. Pomerat, C. M., and Costero, I., 1956, Tissue culture of cat cerebellum, Am. J. Anat. 99: 21 1247.Google Scholar
  250. Pomerat, C. M., Ewalt, J. R., Snodgrass, S. R., and Orr, M. F., 1950, Tissue cultures of adult human cerebral cortex, Tex. Rep. Biol. Med. 8: 108–110.Google Scholar
  251. Privat, A., 1975, Postnatal gliogenesis in the mammalian brain, Int. Rev. Cytol. 40: 281–323.PubMedCrossRefGoogle Scholar
  252. Privat, A., and Leblond, C. P., 1972, The subependymal layer and neighboring region in the brain of the young rat, J. Comp. Neurol. 146: 277–301.PubMedCrossRefGoogle Scholar
  253. Pruss, R. M., Bartlett, P. F., Gavrilovic, J., Lisak, R. P., and Rattray, S., 1982, Mitogens for glial cells: A comparison of the response of cultured astrocytes, oligodendrocytes and Schwann cells, Dev. Brain Res. 2: 19–35.CrossRefGoogle Scholar
  254. Raff, M. C., Abney, E., Brockes, J. P., and Hornby-Smith, A., 1978a, Schwann cell growth factors, Cell 15: 813–822.PubMedCrossRefGoogle Scholar
  255. Raff, M. C., Hornby-Smith, A., and Brockes, J. P., 1978b, Cyclic AMP as a mitogenic signal for cultured rat Schwann cells, Nature (London) 273: 672–673.CrossRefGoogle Scholar
  256. Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Leibowitz, S., and Kennedy, M. C., 1978c, Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture, Nature (London) 274: 813–816.Google Scholar
  257. Raff, M. C., Brockes, J. P., Fields, K. L., and Mirsky, R., 1979a, Neural cell markers: The end of the beginning, Prog. Brain Res. 51: 17–22.PubMedCrossRefGoogle Scholar
  258. Raff, M. C., Fields, K. L., Hakomori, S., Mirsky, R., Pruss, R. M., and Winter, J., 1979b, Cell-type specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res. 174: 283–308.PubMedCrossRefGoogle Scholar
  259. Raff, M. C., Miller, R. H., and Noble, M., 1983, A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium, Nature (London) 303: 390–396.CrossRefGoogle Scholar
  260. Raine, C. S., and Bornstein, M. B., 1974, Unusual profiles in organotypic cultures of central nervous tissue, J. Neurocytol. 3: 313–325.PubMedCrossRefGoogle Scholar
  261. Raine, C. S., and Bornstein, M. B., 1979, Experimental allergic neuritis: Ultrastructure of serum-induced myelin aberrations in peripheral nervous system culture, Lab. Invest. 40: 423–432.PubMedGoogle Scholar
  262. Raine, C. S., Diaz, M., Pakingan, M., and Bornstein, M. B., 1978, Antiserum-induced dissociation of myelinogenesis in vitro: An ultrastructural study, Lab. Invest. 38: 397–403.PubMedCrossRefGoogle Scholar
  263. Raine, C. S., Johnson, A. B., Marcus, D. M., Suzuki, A., and Bornstein, M. B., 1981, Demyelination in vitro: Absorption studies demonstrate that galactocerebroside is a major target, J. Neurol. Sci. 52: 117–131.PubMedCrossRefGoogle Scholar
  264. Ranscht, B., Clapshaw, P. A., Price, J., Noble, M., and Siefert, W., 1982, The development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside, Proc. Natl. Acad. Sci. U.S.A. 79: 2709–2713.PubMedCrossRefGoogle Scholar
  265. Richter-Landsberg, C., and Yavin, E., 1979, Protein profiles of rat embryo cerebral cells during differentiation in culture, J. Neurochem. 32: 133–143.PubMedCrossRefGoogle Scholar
  266. Rioux, F., Derbin, C., Margules, S., Joubert, R., and Bisconte, J.-C., 1980, Kinetics of oligoden- drocyte-like cells in primary culture of mouse embryonic brain, Dev. Biol. 76: 87–99.PubMedCrossRefGoogle Scholar
  267. Ross, L. L., and Bornstein, M. B., 1962, The application of tissue cultures to the study of experimental “allergic” encephalomyelitis. Part 3. Electron microscopic observations of demyelinization, in: Proceedings of the 4th International Congress on Neuropathology, Vol. 2, pp. 285–287, Georg Thieme, Stuttgart.Google Scholar
  268. Roussel, G., Labourdette, G., Nussbaum, J. L., 1981, Characterization of oligodendrocytes in primary cultures from brain hemispheres of newborn rats, Dev. Biol. 81: 372–378.PubMedCrossRefGoogle Scholar
  269. Salzer, J. L., and Bunge, R. P., 1980, Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, J. Cell Biol. 84: 739–752.PubMedCrossRefGoogle Scholar
  270. Salzer, J. L., William, A. K., Glaser, L., and Bunge, R. P., 1980a, Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neu-rite membrane fraction, J. Cell Biol. 84: 767–778.PubMedCrossRefGoogle Scholar
  271. Salzer, J. L., Williams, A. K., Glaser, L., and Bunge, R. P., 19806, Studies of Schwann cell proliferation. III. Characterization of the stimulation and specificity of the response to a neurite fraction, J. Cell Bio. 84: 753–766.Google Scholar
  272. Sandru, L., Siegrist, H. P., Wiesmann, U. N., and Herschkowitz, N., 1980, Development of oligodendrocytes in jimpy brain cultures, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 469–474, Elsevier/North-Holland, Amsterdam.Google Scholar
  273. Sarlieve, L. L., Subba Rao, G., Campbell, G., and Pieringer, R. A., 1980a, Investigations on myelination in vitro: Biochemical and morphological changes in cultures of dissociated brain cells from embryonic mice, Brain Res. 189: 79–80.PubMedCrossRefGoogle Scholar
  274. Sarlieve, L. L., Fabre, M., Delaunoy, J. P., Pieringer, R. A., and Rebel, G., 19806, Surface adhering primary cultures of dissociated brain cells from embryonic mice as a tool to study myelination in vitro in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 489–499, Elsevier/North-Holland, Amsterdam.Google Scholar
  275. Sarlieve, L. L., Delaunoy, J. P., Dierich, A., Ebel, A., Fabre, M., Mandel, P., Rebel, G., Vincendon, G., Wintzerith, M., and Yusufi, A. N. K., 1981, Investigations on myelination in vitro. III. Ultrastructural, biochemical, and immunohistochemical studies in cultures of dissociated brain cells from embryonic mice, J. Neurosci. Res. 6: 659–683.PubMedCrossRefGoogle Scholar
  276. Sato, G., 1975, The role of serum in cell culture, in: Biochemical Actions of Hormones, Vol. III ( G. Litwack, ed.), pp. 391–396, Academic Press, New York.Google Scholar
  277. Schachner, M., and Willinger, M., 1979, Cell type specific cell surface antigens in the cerebellum, Prog. Brain Res. 51: 23–44.PubMedCrossRefGoogle Scholar
  278. Schachner, M., Kim, S. K., and Zehnle, R., 1981, Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies, Dev. Biol. 83: 328–338.PubMedCrossRefGoogle Scholar
  279. Schaper, A., 1897, The earliest differentiation in the central nervous system of vertebrates, Science 5: 430–431.Google Scholar
  280. Schmechel, D., Marango, P. J., Brightman, M., and Goodwin, F., 1978, Brain enolases as specific markers of neuronal and glial cells, Science 199: 313–315.PubMedCrossRefGoogle Scholar
  281. Schmidt, G. L., 1975, Development of biochemical activities associated with myelination in chick brain aggregate cultures, Brain Res. 87: 110–113.PubMedCrossRefGoogle Scholar
  282. Schnitzer, J., and Schachner, M., 1982, Cell type specificity of a neural cell antigen recognized by the monoclonal antibody A2B5, Cell Tissue Res. 224: 625–636.PubMedCrossRefGoogle Scholar
  283. Schousboe, A., 1982, Metabolism and function of neurotransmitters, in: Neuroscience Approached through Cell Culture Vol. I (S. E. Pfeiffer, ed.), pp. 107–141, CRC Press, Boca Raton, Florida (in press).Google Scholar
  284. Seeds, N. W., 1971, Biochemical differentiation in reaggregating brain cell culture, Proc. Natl. Acad. Sci. U.S.A. 68: 1858–1861.PubMedCrossRefGoogle Scholar
  285. Seeds, N., 1973, Differentiation of aggregating brain cell cultures, in: Tissue Culture of the Nervous System ( G. Sato, ed.), pp. 35–53, Plenum Press, New York.CrossRefGoogle Scholar
  286. Seeds, N. W., 1975, Expression of differentiated actvities in reaggregated brain cell cultures, J. Bio!. Chem. 250: 5455–5458.Google Scholar
  287. Seeds, N. W., and Gilman, A. G., 1971, Norepinephrine stimulated increase of cyclic AMP levels in developing mouse brain cell cultures, Science 174: 292.PubMedCrossRefGoogle Scholar
  288. Seeds, N. W., and Haffke, S. C., 1978, Cell junction and ultrastructural development of reaggregated mouse brain cultures, Dev. Neurosci. 1: 69–79.PubMedCrossRefGoogle Scholar
  289. Seeds, N. W., and Vatter, A. E., 1971, Synaptogenesis in reaggregating brain cell culture, Proc. Nat!. Acad. Sci. U.S.A. 68: 3219–3222.CrossRefGoogle Scholar
  290. Seil, F. J., 1979, Cerebellum in tissue culture, in: Reviews of Neuroscience, Vol. 4 ( D. M. Schneider, ed.), pp. 105–177, Raven Press, New York.Google Scholar
  291. Seil, F., 1982, Demyelination, Adv. Cell. Neurobiol. 3: 235–274.Google Scholar
  292. Seil, F. J., and Agrawal, H. C., 1980, Myelin-proteolipid protein does not induce demyelinating or myelination-inhibiting antibodies, Brain Res. 194: 273–277.PubMedCrossRefGoogle Scholar
  293. Seil, F. J., and Blank, N. K., 1981, Myelination of central nervous system axons in tissue culture by transplanted oligodendrocytes, Science 212: 1407–1408.PubMedCrossRefGoogle Scholar
  294. Seil, F., and Herndon, R. M., 1970, Cerebellar granule cells in vitro: A light and electron microscope study, J. Cell Biol. 45: 212–220.PubMedCrossRefGoogle Scholar
  295. Seil, F. J., Falk, G. A., Kies, M. W., and Alvord, E. C., Jr., 1968, The in vitro demyelinating activity of sera from guinea pigs sensitized with whole CNS and with purified encephalitogen, Exp. Neurol. 22: 545–555.PubMedCrossRefGoogle Scholar
  296. Seil, F. J., Rauch, H. C., Einstein, E. R., and Hamilton, A. E., 1973, Myelination inhibition factor: Its absence in sera from subhuman primates sensitized with myelin basic protein, J. Immunol. 111: 96–100.PubMedGoogle Scholar
  297. Seil, F. J., Smith, M. E., Leiman, A. L., and Kelly, J. M., 1975a, Myelination inhibiting and neuroelectric blocking factors in experimental allergic encephalomyelitis, Science 187: 951–953.PubMedCrossRefGoogle Scholar
  298. Seil, F. J., Kies, M. W., and Bacon, M., 1975b, Neural antigens and induction of myelination inhibition factor, J. Immunol. 114: 630–634.PubMedGoogle Scholar
  299. Seil, F. J., Blank, N. K., and Leiman, A. L. 1979, Toxic effects of kainic acid on mouse cerebellum in vitro, Brain Res. 161: 253–265.CrossRefGoogle Scholar
  300. Seil, F. J., Kies, M. W., Agrawal, H. C., Quarles, R. H., and Brady, R. O., 1980a, Myelin proteins dissociated from induction of antimyelin antibodies, in: Tissue Culture in Neurobiology ( E. Giacobini, A. Vernadakis, and A. Shahar, eds.), pp. 477–488, Raven Press, New York.Google Scholar
  301. Seil, F. J., Leiman, A. L., and Woodward, W. R., 1980b, Cytosine arabinoside effects on developing cerebellum in tissue culture, Brain Res. 186: 393–408.PubMedCrossRefGoogle Scholar
  302. Seil, F. J., Quarles, R. H., Johnson, D., and Brady, R. O., 1981, Immunization with purified myelin-associated glycoprotein does not evoke myelination-inhibiting or demyelinating antibodies, Brain Res. 209: 470–475.PubMedCrossRefGoogle Scholar
  303. Sensenbrenner, M., 1977, Dissociated brain cells in primary cultures, in: Cell, Tissue, and Organ Cultures in Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 191–213, Academic Press, New York.Google Scholar
  304. Sensenbrenner, M., Booher, J., and Mandel, P., 1971, Cultivation and growth of dissociated neurons from chick embryo cerebral cortex in the presence of different substrates, Z. Zell-forsch. 117: 559–569.CrossRefGoogle Scholar
  305. Sensenbrenner, M., Springer, N., Booher, J., and Mandel, P., 1972, Histochemical studies during the differentiation of dissociated nerve cells cultivated in the presence of brain extracts, Neurobiology 2: 49–60.PubMedGoogle Scholar
  306. Sensenbrenner, M., Wittendorp, E., Barakat, I., and Rechenmann, R. V., 1980a, Autoradio-graphic study of proliferating brain cells in culture, Dev. Biol. 75: 268–277.PubMedCrossRefGoogle Scholar
  307. Sensenbrenner, M., Labourdette, G., Delaunoy, J. P., Pettman, B., Devilliers, G., Mooneu, G., and Bock, E., 1980b, Morphological and biochemical differentiation of glial cells in primary cultures, in: Tissue Culture in Neurobiology ( E. Giacobini, A. Vernadakis, and A. Shahar, eds.), pp. 385–395, Raven Press, New York.Google Scholar
  308. Sensenbrenner, M., Barakat, I., Delaunoy, J. P., Labourdette, G., and Pettman, B., 1982, Influence of brain extracts on nerve cell development, in: Neuroscience Approached through Cell Culture, Vol. I ( S. E. Pfeiffer, ed.), pp. 85–105, CRC Press, Boca Raton, Florida.Google Scholar
  309. Sheffield, W. D., and Kim, S. U., 1977, Basic protein radioimmunoassay as a monitor of myelin in tissue culture, Brain Res. 120: 193–196.PubMedCrossRefGoogle Scholar
  310. Sheppard, J. R., Brus, D., and Wehner, J. M., 1978, Brain reaggregate cultures: Biochemical evidence for myelin membrane synthesis, J. Neurobiol. 9: 309–315.PubMedCrossRefGoogle Scholar
  311. Sidman, R. L., 1970, Proliferation, migration and interaction in the developing mammalian central nervous system, in: The Neurosciences Second Study Program ( F. O. Schmitt, ed.), pp. 100–107, Rockefeller University Press, New York.Google Scholar
  312. Sidman, R. L., Dickie, M. M., and Appel, S. H., 1964, Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system, Science 144: 309–311.PubMedCrossRefGoogle Scholar
  313. Sidman, R. L., Green, M. G., and Appel, S. H., 1965, Catalog of the Neurological Mutants of the Mouse, Harvard University Press, Cambridge.Google Scholar
  314. Siegrist, H. P., Burkart, T., Hofmann, K., Wiesmann, U., and Herschkowitz, N. N., 1980, Theophylline reduces the activity of cerebroside-sulfotransferase, a key enzyme in myelination, in cell cultures from newborn mouse brain, Pediatr. Res. 14: 1226–1229.PubMedCrossRefGoogle Scholar
  315. Siegrist, H. P., Bologa-Sandru, L., Burkart, T., Wiesmann, U., Hofmann, K., and Herschkowitz, N., 1981, Synthesis of lipids in mouse brain cell cultures during development, J. Neurosci. Res. 6: 293–301.PubMedCrossRefGoogle Scholar
  316. Silberberg, D. H., 1975, Scanning electron microscopy of organotypic rat cerebellum cultures, J. Neuropathol. Exp. Neurol. 34: 189–199.PubMedCrossRefGoogle Scholar
  317. Silberberg, D. H., Benjamins, J., Herschkowitz, N., and McKhann, G. M., 1972, Incorporation of radioactive sulphate into sulphatide during myelination on cultures of rat cerebellum, J. Neurochem. 19: 11–18.PubMedCrossRefGoogle Scholar
  318. Silberberg, D. H., Dorfman, S. H., Latovitzki, N., and Younkin, L. H., 1980, Oligodendrocyte differentiation in myelinating cultures, in: Tissue Culture in Neurobiology ( E. Giacobini, A. Vernadakis, and A. Shahar, eds.), pp. 489–500, Raven Press, New York.Google Scholar
  319. Singh, H., and Pfeiffer, S. E., 1983, Expression of galactolipids by mixed primary cultures from rat brain, Trans. Am. Soc. Neurochem. 14: 218.Google Scholar
  320. Skoff, R. P., Price, D. L., and Stocks, A., 1976a, Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. I. Cell proliferation, J. Comp. Neurol. 169: 291–312.PubMedCrossRefGoogle Scholar
  321. Skoff, R. P., Price, D. L., and Stocks, A., 1976b, Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin, J. Comp. Neurol. 169: 313–333.PubMedCrossRefGoogle Scholar
  322. Snyder, D. S., Raine, C. S., Farooq, M., and Norton, W. T., 1980, The bulk isolation of oligodendroglia from whole rat forebrain: A new procedure using physiologic media, J. Neurochem. 34: 1614–1621.PubMedCrossRefGoogle Scholar
  323. Sommer, I., and Schachner, M., 1981, Monoclonal antibodies (01 to 04) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system, Dev. Biol. 83: 311–327.PubMedCrossRefGoogle Scholar
  324. Sprinkle, T. J., Wells, M. R., Garver, F. A., and Smith, D. B., 1980, Studies on the Wolfgram high molecular weight CNS myelin proteins: Relationship to 2’,3’-cyclic nucleotide 3’-phosphohydrolase, J. Neurochem. 35: 1200–1208.PubMedCrossRefGoogle Scholar
  325. Steck, A., and Perruisseau, G., 1980, Characterization of membranes of isolated oligodendrocytes and clonal lines of the nervous system, J. Neurol. Sci. 47: 135–144.PubMedCrossRefGoogle Scholar
  326. Stefanelli, A., Cataldi, E., and Ieradi, L. A., 1977, Specific synaptic systems in reaggregated spherules from dissociated chick cerebellum cultivated in vitro, Cell Tissue Res. 182: 311–325.Google Scholar
  327. Steinberg, M. S., 1963, Reconstruction of tissues by dissociated cells, Science 141: 401–408.PubMedCrossRefGoogle Scholar
  328. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. de F., 1978a, Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat C.N.S., J. Neurocytol. 7: 251–263.PubMedCrossRefGoogle Scholar
  329. Sternberger, N. H., Itoyama, Y., Kies, M., and Webster, H. de F., 1978b, Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation, Proc. Natl. Acad. Sci. U.S.A. 75: 2521–2524.PubMedCrossRefGoogle Scholar
  330. Storts, R. W., and A. Koestner, 1969, Development and characterization of myelin in tissue culture of canine cerebellum, Z. Zellforsch. 95: 9–18.PubMedCrossRefGoogle Scholar
  331. Sturrock, R. R., 1981, Electron microscopic evidence for mitotic division of oligodendrocytes, J. Anat. 132: 429–432.PubMedGoogle Scholar
  332. Sturrock, R. R., 1982, Cell division in the normal central nervous system, Adv. Cell. Neurobiol. 3: 3–33.Google Scholar
  333. Sturrock, R. R., and McRae, D. A.,1980, Mitotic division of oligodendrocytes which have begun myelination, J. Anat. 131: 579–584.Google Scholar
  334. Sundarraj, N., Schachner, M., and Pfeiffer, S. E., 1975, Biochemically differentiated mouse glial lines carrying a nervous system specific cell surface antigen (NS-1), Proc. Natl. Acad. Sci. U.S.A. 72: 1927–1931.PubMedCrossRefGoogle Scholar
  335. Szuchet, S., and Stefansson, K., 1980, In vitro behavior of isolated oligodendrocytes, in: Advances in Cellular Neurobiology (S. Fedoroff and L. Hertz, eds.), pp. 313–346, Academic Press, New York.Google Scholar
  336. Szuchet, S., Stefansson, K., Wollman, R. L., Dawson, G., and Arnason, B. G., 1980, Maintenance of isolated oligodendrocytes in long-term culture, Brain Res. 200: 151–164.PubMedCrossRefGoogle Scholar
  337. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. U.S.A. 76: 4350–4354.PubMedCrossRefGoogle Scholar
  338. Trapp, B. D., Honegger, P., Richelson, E., and Webster, H. de F., 1978, Effects of vitamin Eon the fine structure of aggregating cell cultures, Anat. Rec. 190: 564.Google Scholar
  339. Trapp, B. D., Honegger, P., Richelson, E., and Webster, H. de F., 1979, Morphological differentiation of mechanically dissociated fetal rat brain in aggregating cell cultures, Brain Res. 160: 117–130.PubMedCrossRefGoogle Scholar
  340. Traugott, U., Snyder, S., and Raine, C. S., 1979, Oligodendrocyte staining by multiple sclerosis serum is nonspecific, Ann. Neurol. 6: 13–20.PubMedCrossRefGoogle Scholar
  341. Van Heyningen, W. E., 1963, The fixation of tetanus toxin, strychnine, serotonin and other substances by ganglioside, J. Gen. Microbiol. 31: 375–387.CrossRefGoogle Scholar
  342. Varon, S., 1970, In vitro study of developing neural tissue and cells: Past and prospective contributions, in: The Neurosciences (F. O. Schmidt, ed.), pp. 83–99, Rockefeller University Press, New York.Google Scholar
  343. Varon, S., aid Bunge, R. P., 1978, Tropic mechanisms in the peripheral nervous system, Annu. Rev. Neurosci. 1: 327–361.PubMedCrossRefGoogle Scholar
  344. Varon, S., and Manthorpe, M., 1982, Schwann cells: An in vitro perspective, Adv. Cell. Neurobiol. 3: 35–95.Google Scholar
  345. Varon, S., and Raiborn, C. W., Jr., 1969, Dissociation, fractionation, and culture of embryonic brain cells, Brain Res. 12: 180–199.PubMedCrossRefGoogle Scholar
  346. Vaughn, J. E., 1969, An electron microscopic analysis of gliogenesis in rat optic nerves, Z. Zell-forsch. 94: 293–324.CrossRefGoogle Scholar
  347. Waehneldt, T. V., and Malotka, J., 1980, Comparative electrophoretic study of the Wolfgram proteins in myelin from several Mammalia, Brain Res. 189: 582–587.PubMedCrossRefGoogle Scholar
  348. Webster, H. de F., 1975, Development of peripheral myelinated and unmyelinated nerve fibers, in: Peripheral Neuropathy ( P. J. Dyck, P. K. Thomas, and E. H. Lambert, eds.), pp. 3761, W. B. Saunders, Philadelphia.Google Scholar
  349. Weinberg, H. J., and Spencer, P. S., 1975, Studies on the control of myelinogenesis. I. Myelination of regenerating axons after entry into a foreign unmyelinated nerve, J. Neurocytol. 4: 395–418.PubMedCrossRefGoogle Scholar
  350. Weinberg, H. J., and Spencer, P. S., 1976, Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production, Brain Res. 113: 363–378.PubMedCrossRefGoogle Scholar
  351. Weinberg, E. L., and Spencer, P. S., 1979, Studies on the control of myelinogenesis. 3. Signalling of oligodendrocyte myelination by regenerating peripheral axons, Brain Res. 162: 273–279.PubMedCrossRefGoogle Scholar
  352. Werner, I., Peterson, G. R., and Shuster, L., 1971, Choline acetyltransferase and acetylcholinesterase in cultured brain cells from chick embryos, J. Neurochem. 18: 141–151.PubMedCrossRefGoogle Scholar
  353. Weston, J. A., 1963, A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick, Dey. Biol. 6: 279–310.CrossRefGoogle Scholar
  354. Wiesmann, U. N., Hofmann, K., Burkart, T., and Herschkowitz, N., 1975, Dissociated cultures of newborn mouse brain. I. Metabolism of sulfated lipids and mucopolysaccharides, Neurobiology 5: 305–315.PubMedGoogle Scholar
  355. Wiesmann, U. N., Burkart, T., Hofmann, K., Siegrist, H.-P., and Herschkowitz, N., 1979, Biochemical alterations of sulfatide metabolism in jimpy brain cell culture, in: Models for the Study of Inborn Errors of Metabolism ( F. A. Hommes, ed.), pp. 279–280, Elsevier/NorthHolland, Amsterdam.Google Scholar
  356. Wiesmann, U. N., Hofmann, K., Burkart, T., Siegrist, H.-P., Sandru, L., Omlin, F. X., and Herschkowitz, N., 1980, Tissue culture models for the study of the jimpy mutant, in: Neurological Mutants Affecting Myelination: Research Tools in Neurobiology, INSERM Symposium, No. 14, pp. 461–468, Elsevier, Amsterdam.Google Scholar
  357. Wiggins, R. C., Joffe, S., Davidson, D., and Del Valle, U., 1974, Characterization of Wolfgram proteolipid protein of bovine white matter and fractionation of molecular weight heterogeneity, J. Neurochem. 22: 171–175.PubMedCrossRefGoogle Scholar
  358. Windle, W. F., 1958, Biology of Neuroglia, Charles C. Thomas, Springfield, Illinois.Google Scholar
  359. Wolf, M. K., 1964, Differentiation of neuronal types and synapses in myelinating cultures of mouse cerebellum, J. Cell Biol. 22: 259–279.PubMedCrossRefGoogle Scholar
  360. Wolf, M., 1970, Anatomy of mouse cerebellum. II. Organotypic migration of granule cells demonstrated by silver impregnation of normal and mutant cultures, J. Comp. Neurol. 140: 281–297.PubMedCrossRefGoogle Scholar
  361. Wolf, M. K., 1974, Problems in culture analysis of neurological mutant disorders, in: Methodological Approaches to the Study of Brain Maturation and Its Abnormalities ( D. P. Purpura and G. P. Reaser, eds.), pp. 29–32, University Park Press, Baltimore.Google Scholar
  362. Wolf, M. K., 1977, Cell and organotypic culture studies of neurological mutations affecting structural development, in: Cell, Tissue, and Organ Cultures in Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 555–572, Academic Press, New York.Google Scholar
  363. Wolf, M. K., and Billings-Gagliardi, S., 1983, A tissue culture strategy for studying mutant mice with CNS hypomyelination, in: Neuroscience Approached through Cell Culture, Vol. II ( S. E. Pfeiffer, ed.), pp. 141–154, CRC Press, Boca Raton, Florida.Google Scholar
  364. Wolf, M. K., and Holden, A. B., 1969, Tissue culture analysis of the inherited defect of central nervous system myelination in jimpy mice, J. Neuropathol. Exp. Neurol. 28: 195–204.PubMedCrossRefGoogle Scholar
  365. Wolf, M. K., Schwing, G. B., Adcock, L. H., and Billings-Gagliardi, S., 1981, Hypomyelinated mutant mice. III. Increased myelination in mutant cerebellum co-cultured with normal optic nerve, Brain Res. 206: 193–197.PubMedCrossRefGoogle Scholar
  366. Wolfgram, F., 1966, A new proteolipid fraction of the nervous system. I. Isolation and amino acid analyses, J. Neurochem. 13: 461–470.PubMedCrossRefGoogle Scholar
  367. Wolfgram, F., and Rose, A. S., 1957, The morphology of neuroglia in tissue culture with comparison to histological preparations, J. Neuropathol. Exp. Neurol. 16: 514–531.PubMedCrossRefGoogle Scholar
  368. Wollman, R. L., Szuchet, S., Barlow, J., and Jerkovic, M., 1981, Ultrastructural changes accompanying the growth of isolated oligodendrocytes, J. Neurosci. Res. 6: 757–769.CrossRefGoogle Scholar
  369. Wood, P. M., 1976, Separation of functional Schwann cells and neurons from normal peripheral nerve tissue, Brain Res. 115: 361–375.PubMedCrossRefGoogle Scholar
  370. Wood, P. M., and Bunge, R. P., 1975, Evidence that sensory axons are mitogenic for Schwann cells, Nature (London) 256: 662–664.CrossRefGoogle Scholar
  371. Wood, P. M., Okada, E., and Bunge, R., 1980, The use of networks of disassociated rat dorsal root ganglion neurons to induce myelination by oligodendrocytes in culture, Brain Res. 196: 247–252.PubMedCrossRefGoogle Scholar
  372. Wood, P., Szuchet, S., Williams, A. K., Bunge, R. P., and Arnason, B. G. W., 1983, CNS myelin formation in cocultures of rat neurons and lamb oligodendrocytes, Trans. Am. Soc. Neurochem. 14: 212.Google Scholar
  373. Yavin, E., and Menkes, J. H., 1973, The culture of dissociated cells from rat cerebral cortex, J. Cell Biol. 57: 232–237.PubMedCrossRefGoogle Scholar
  374. Yavin, E., and Yavin, Z., 1974, Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface, J. Cell Biol. 62: 540–546.PubMedCrossRefGoogle Scholar
  375. Yavin, E., and Yavin, E., 1977, Synaptogenesis and myelinogenesis in dissociated cerebral cells from rat embryo on polylysine coated surfaces, Exp. Brain Res. 29: 137–147.PubMedCrossRefGoogle Scholar
  376. Yonezawa, T., and Iwanami, H., 1966, An experimental study of thiamine deficiency in nervous tissue using culture techniques, J. Neuropathol. Exp. Neurol. 25: 362–372.PubMedCrossRefGoogle Scholar
  377. Yonezawa, T., Bornstein, M., Peterson, E., and Murray, M., 1962a, A histochemical study of oxidative enzymes in myelinating cultures of central and peripheral nervous tissue, J. Neuropathol. Exp. Neurol. 21: 479–487.PubMedCrossRefGoogle Scholar
  378. Yonezawa, T., Bornstein, M. B., Peterson, E. R., and Murray, M. R., 1962b, Temporal and spatial distribution of oxidative enzymes during myelin formation and maintenance, in: Proceedings of the 4th International Congress on Neuropathology, Vol. II, pp. 273–274, Georg Thieme, Stuttgart.Google Scholar
  379. Yonezawa, T., Saida, T., and Hasagawa, M., 1976, Myelination inhibiting factor in experimental allergic encephalomyelitis and demyelinating diseases, in: The Aetiology and Pathogenesis of the Demyelinating Diseases ( H. Shikari, T. Yonezawa, and Y. Kuriowa, eds.), pp. 255–263, Japan Science Press, Tokyo.Google Scholar
  380. Younkin, L., and Silberberg, D. H., 1973, Myelination in developing cultured newborn rat cerebellum inhibited by 5-bromodeoxyuridine, Exp. Cell Res. 76: 455–458.PubMedCrossRefGoogle Scholar
  381. Younkin, L. H., and Silberberg, D. H., 1976, Delay of oligodendrocyte differentiation by 5-bromodeoxyuridine (BudR), Brain Res. 101: 600–605.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Steven E. Pfeiffer
    • 1
  1. 1.Department of MicrobiologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations