Advertisement

The Biology of the Oligodendrocyte

  • Patrick Wood
  • Richard P. Bunge
Part of the Advances in Neurochemistry book series (ANCH, volume 5)

Abstract

Certain problems in defining the oligodendrocyte cell type should be pointed out at the onset. The interfascicular oligodendrocyte is commonly defined as the cell responsible for the formation and maintenance of central myelin. Direct demonstration of the connections between oligodendrocyte somas and myelin sheaths is inherently very difficult, however, and it is possible that there are substantial numbers of cells in white matter, resident among the myelinrelated oligodendrocytes, that do not directly husband myelin segments. This possibility must be seriously considered because it is now known from tissueculture studies (detailed in Section 6) that oligodendrocytes may express myelin-specific components when not directly connected to myelin sheaths. Also, recent detailed studies of remyelination in adult white matter suggest that glial reserve or stem cells (resident, but as yet unrecognized, in white matter) are responsible for the production of new oligodendrocytes prior to remyelination.

Keywords

Optic Nerve Corpus Callosum Schwann Cell Rough Endoplasmic Reticulum Myelin Sheath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, M., and Johnson, M., 1946, Quantitative histology of Wallerian degeneration. I. Nuclear population in rabbit sciatic nerve, J. Anat. 80: 37–50.Google Scholar
  2. Abney, E. R., Bartlett, P., and Raff, M. C., 1981, Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Dev. Biol. 83: 301–310.PubMedGoogle Scholar
  3. Asbury, A., 1975, The biology of Schwann cells, in: Peripheral Neuropathy, Vol. I ( P. Dyck, P. K. Thomas, and E. H. Lambert, eds.), W. B. Saunders, Philadelphia, pp. 201–212.Google Scholar
  4. Berg, G., and Schachner, M., 1981, Immuno-electron microscopic identification of 0-antigenbearing oligodendroglial cells in vitro, Cell Tissue Res. 21: 313–325.Google Scholar
  5. Bischoff, R., 1979, Tissue culture studies on the origin of myogenic cells during muscle regeneration in the rat, in: Muscle Regeneration ( A. Mauro, ed.), pp. 13–29, Raven Press, New York.Google Scholar
  6. Blakemore, W. F., 1976, Invasion of Schwann cells into the spinal cord of the rat following local injection of lysolecithin, Neuropathol. Appl. Neurobiol. 2: 21–39.Google Scholar
  7. Bologa-Sandru, L., Siegrist, H. P., Zgraggen, H., Hofmann, K., Wiesmann, U., Dahl, D., and Herschkowitz, N., 1981, Expression of antigenic markers during the development of oligodendrocytes in mouse brain cultures, Brain Res. 210: 217–229.PubMedGoogle Scholar
  8. Bonnaud-Toulze, E., Johnson, A., Bornstein, M., and Raine, C., 1981, A marker for oligodendrocytes and its relation to myelinogenesis: An immunocytochemical study with experimental allergic encephalomyelitis serum and C. N. S. cultures, J. Neurocytol. 10: 645–657.Google Scholar
  9. Bornstein, M., and Raine, C., 1970, Experimental allergic encephalomyelitis: Antiserum inhibition of myelination in vitro, Lab. Invest. 23: 536–542.PubMedGoogle Scholar
  10. Bray, G. M., Rasminsky, M. and Aguayo, A., 1981, Interactions between axons and their sheath cells, Annu. Rev. Neurosci. 4: 127–162.PubMedGoogle Scholar
  11. Bunge, M. B., Bunge, R. P., and Ris., H., 1961, Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord, J. Biophys. Biochem. Cytol. 10: 67–94.PubMedGoogle Scholar
  12. Bunge, M. B., Bunge, R. P., and Pappas, G. D., 1962, Electron microscopic demonstrations of connections between glia and myelin sheaths in the developing mammalian central nervous system, J. Cell Biol. 12: 448–453.PubMedGoogle Scholar
  13. Bunge, M. B., Williams, A. K., Wood, P. M., Uitto, J., and Jeffrey, J., 1980, Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen production, J. Cell Biol. 84: 184–202.PubMedGoogle Scholar
  14. Bunge, M. B., Williams, A. K., and Wood, P. M., 1982, Neuron—Schwann cell interaction in basal lamina formation, Dev. Biol. 92: 449–460.PubMedGoogle Scholar
  15. Bunge, R. P., 1968, Glial cells and the central myelin sheath, Physiol. Rev. 48: 197–251.PubMedGoogle Scholar
  16. Caley, D., and Maxwell, D. S., 1968, An electron microscopic study of the neuroglia during postnatal development of the rat cerebellum, J. Comp. Neurol. 133: 45–70.PubMedGoogle Scholar
  17. Carey, D. J., and Bunge, R. P., 1981, Factors influencing the release of proteins by cultured Schwann cells, J. Cell Biol. 91: 666–672.PubMedGoogle Scholar
  18. Cassel, D., Wood, P., Bunge, R. P., and Glaser, L., 1982, Mitogenicity of brain axolemma membranes and soluble factors for dorsal root ganglion Schwann cells, J. Cell Biochem. 18: 443445.Google Scholar
  19. Colman, D. R., Kreibich, G., Frey, A. B., and Sabatini, D. D., 1982, Synthesis and incorporation of myelin polypeptides into CNS myelin, J. Cell Biol. 95: 598–608.PubMedGoogle Scholar
  20. Dal Canto, M. C., and Lipton, H. L., 1980, Schwann cell remyelination and recurrent demyelination in the central nervous system of mice infected with attenuated Theiler’s virus, Am. J. Pathol. 98: 101–122.Google Scholar
  21. Del Cerro, M., and Schwarz, J., 1976, Prenatal development of Bergmann glial fibers in rodent cerebellum, J. Neurocytol. 5: 669–676.PubMedGoogle Scholar
  22. Del Rio Hortega, P., 1921, Estudios obre la neuroglia: La glia de escasas radiaciones (oligodendroglia), Bol. R. Soc. Esp. Hist. Nat. 21: 63–92.Google Scholar
  23. Del Rio Hortega, P., 1922, Son homologables la glia de escasas radiaciones y la celula de Schwann?, Bol. R. Soc. Esp. Hist. Nat. 10: 25–29.Google Scholar
  24. Del Rio Hortega, P., 1924, La glie a radiations peu nombreuses et la cellule de Schwann sont elles homologables?, C. R. Soc. Biol. 91: 818–820.Google Scholar
  25. Del Rio Hortega, P., 1928, Tercera aportación al conocimiento morfologico e interpretación funcional de la oligodendroglia, Mem. R. Soc. Esp. Hist. Nat. 14: 5–122.Google Scholar
  26. DeVries, G. H., Salzer, J. L., and Bunge, R. P., 1982, Axolemma-enriched fractions isolated from PNS and CNS are mitogenic for Schwann cells, Dev. Brain Res. 3: 295–299.Google Scholar
  27. Diaz, M., Bornstein, M., and Raine, C. S., 1978, Disorganization of myelinogenesis in cultures by anti-CNS antisera, Brain Res. 154: 231–239.PubMedGoogle Scholar
  28. Fry, J., Weissbarth, S., Lehrer, G., and Bornstein, M., 1974, Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelinates in cord tissue cultures, Science 183: 540–542.PubMedGoogle Scholar
  29. Fugita, H., and Figita, S., 1964, Electron microscopic studies on the differentiation of the ependymal cells and the glioblast in the spinal cord of domestic fowl, Z. Zeltforsch. 64: 262–272.Google Scholar
  30. Fugita, S., 1963, The matrix cell and cytogenesis in the developing central nervous system, J. Comp. Neurol. 120: 37–42.Google Scholar
  31. Fugita, S., 1965, An autoradiographic study on the origin and fate of the sub-pial glioblast in the embryonic chick spinal cord, J. Comp. Neurol. 124: 51–60.Google Scholar
  32. Fulcrand, J., and Privat, A., 1977, Neuroglial reactions secondary to Wallerian degeneration in the optic nerve of the postnatal rat: Ultrastructural and quantitative study, J. Comp. Neurol. 176: 189–224.PubMedGoogle Scholar
  33. Gebicke-Harter, P., Althaus, H., Schwartz, P., and Neuhoff, V., 1981, Oligodendrocytes from postnatal cat brain in cell cultures. 1. Regeneration and maintenance, Brain Res. 227: 497518.Google Scholar
  34. Hall, S., and Gregson, N., 1975, The effects of mitomycin C on the process of regeneration in the mamalian peripheral nervous system, Neuropathol. Appt. Neurobiol. 1: 149–170.Google Scholar
  35. Hardesty, I., 1904, On the development and nature of the neuroglia, Am. J. Anat. 3: 229–268.Google Scholar
  36. Hardesty, I., 1905, On the occurrence of sheath cells and the nature of the axone sheaths in the central nervous system, Am. J. Anat. 4: 329–354.Google Scholar
  37. Harkness, R. P., 1957, Regeneration of the liver, Br. Med. Bull. 13: 87–93.PubMedGoogle Scholar
  38. Henrikson, C., and Vaughn, J., 1974, Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord, J. Neurocytol. 3: 659–675.PubMedGoogle Scholar
  39. Hild, W., 1957, Myelinogenesis in cultures of mammalian nervous tissue, Z. Zeltforsch. 46: 7195.Google Scholar
  40. Herndon, R. M., Price, D. L., and Weiner, P. P., 1977, Regeneration of oligodendroglia during recovery from demyelinating disease, Science 195: 693–694.PubMedGoogle Scholar
  41. Hinds, J. W., and Ruffett, T. L., 1974, Cell proliferation in the neural tube: An electron microscopic and Golgi analysis in the mouse cerebral vesicle, Z. Zellforsch. 115: 226–264.Google Scholar
  42. Honegger, P., and Richelson, E., 1975, Biochemical differentiation of mechanically dissociated mammalian brain in aggregating cell cultures, Brain Res. 109: 335–354.Google Scholar
  43. Hruby, S., Alvord, E., and Seil, F., 1977, Synthetic galactocerebrosides evoke myelination inhibiting antibodies, Science 195: 173–175.PubMedGoogle Scholar
  44. Imamoto, K., Paterson, J., and Leblond, C., 1978, Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Sequential changes in oligodendrocytes, J. Comp. Neurol. 180: 115–138.PubMedGoogle Scholar
  45. Johnson, A., and Bornstein, M., 1978, Myelin-binding antibodies in vitro: Immunoperoxidase studies with experimental allergic encephalomyelitis, antigalactocereroside and multiple sclerosis sera, Brain Res. 159: 173–189.PubMedGoogle Scholar
  46. Johnson, E. S., and Ludwin, S. K., 1981, The demonstration of recurrent demyelination and remyelination of axons in the central nervous system, Acta Neuropathol. (Berlin) 53: 93–98.Google Scholar
  47. Koenig, H., Bunge, M. B., and Bunge, R. P., 1962, Nucleic acid and protein metabolism in white matter—Observations during experimental demyelination and remyelination: A histochemical and autoradiographic study of spinal cord of the adult cat, Arch. Neurol. 6: 17–33.Google Scholar
  48. Kruger, L., and Maxwell, D. S., 1966, Electron microscopy of oligodendrocytes in normal rat cerebrum, Am. J. Anat. 118: 411–436.PubMedGoogle Scholar
  49. Levitt, R., Cooper, M. L., and Rakic, P., 1981, Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis, J. Neurosci. 1: 27–39.PubMedGoogle Scholar
  50. Ling, E. A., and Leblond, C. P., 1973, Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum, J. Comp. Neurol. 149: 73–82.PubMedGoogle Scholar
  51. Ling, E., Paterson, J., Privat, A., Mori, S., and Leblond, C. P., 1973, Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats, J. Comp. Neurol. 149: 43–72.PubMedGoogle Scholar
  52. Lisak, R., Pleasure, D., Silberberg, D., Manning, M., and Saida, T., 1981, Long term cultures of bovine oligodendroglia isolated with a Percoll gradient, Brain Res. 223: 107–122.PubMedGoogle Scholar
  53. Ludwin, S. K., 1978, Central nervous system demyelination and remyelination in the mouse: An ultrastructural study of cuprizone toxicity, Lab. Inves. 39: 597–612.Google Scholar
  54. Ludwin, S. K., 1979a, An autoradiographic study of cellular proliferation in remyelination of the central nervous system, Am. J. Pathol. 95: 683–690.PubMedGoogle Scholar
  55. Ludwin, S. K., 1979b, The perineuronal satellite oligodendrocyte—A possible role in myelination, Acta Neuropathol. 47: 49–53.PubMedGoogle Scholar
  56. Ludwin, S. K., 1980, Chronic demyelination inhibits remyelination in the central nervous system: An analysis of contributing factors, Lab Invest. 43: 382–387.PubMedGoogle Scholar
  57. Ludwin, S. K., 1981, Pathology of demyelination and remyelination, in: Demyelinating Disease: Basic and Clinical Electrophysiology ( S. G. Wasman and J. M. Ritchie eds.), pp 123–168, Raven Press, New York.Google Scholar
  58. Matthieu, J. J., Honegger, P., Trapp, B. D., Cohen, S. R., and Webster, H. de F., 1978, Myelination in rat brain aggregating cell cultures, Neuroscience 3: 545–572.Google Scholar
  59. McCarthy, K., and deVellis, J., 1980, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol. 85: 890–902.PubMedGoogle Scholar
  60. McKenna, O., Arnold, G., and Holtzman, E., 1976, Microperoxisome distribution in the central nervous system in the rat, Brain Res. 117: 181–194.PubMedGoogle Scholar
  61. Mirsky, R., Winter, J., Abney, E., Pruss, R., Gavrilovic, J., and Raff, M., 1980, Myelin specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture, J. Cell Biol. 84: 483–494.PubMedGoogle Scholar
  62. Mori, S., and Leblond, C. P., 1969, Electron microscopic features and proliferation of astrocytes in the corpus callosum of the rat, J. Comp. Neurol. 137: 197–226.PubMedGoogle Scholar
  63. Mori, S., and Leblond, C. P., 1970, Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats, J. Comp. Neurol. 139: 1–30.PubMedGoogle Scholar
  64. Paterson, J., Privat, A., Ling, E., and Leblond, C., 1973, Investigation of glial cells in semithin sections. III. Transformation of subependymal cells into glial cells, as shown by radioautography after 3H-thymidine injection into the lateral ventricle of the brain of young rats, J. Comp. Neurl. 149: 83–102.Google Scholar
  65. Penfield, W., 1932, Cytology and Cellular Pathology of the Nervous System, Hoeber, New York.Google Scholar
  66. Peters, A., 1964, Observations on the connexions between myelin sheaths and glial cells in the optic nerves of young rats, J. Anat. 98: 125–134.PubMedGoogle Scholar
  67. Peters, A., and Vaughn, J. E., 1970, Morphology and development of the myelin sheath, in: Myelination ( A. N. Davison and A. Peters, eds.), pp. 3–79, Charles C. Thomas, Springfield, Illinois.Google Scholar
  68. Peters, A., Palay, S. L., and Webster, H. de F., 1976, The Fine Structure of the Nervous System: The Neurons and Supporting Cells, W. B. Saunders, Philadelphia.Google Scholar
  69. Philips, D., 1973, An electron microscopic study of macroglia and macroglia in the lateral funiculus of the developing spinal cord in the fetal monkey, Z. Zellforsch. 140: 145–167.Google Scholar
  70. Poduslo, S. E., Miller, L., and Wolinsky, J., 1982, The production of a membrane by purified oligodendroglia maintained in culture, Exp. Cell Res. 137: 203–215.PubMedGoogle Scholar
  71. Privat, A., and Leblond, C. P., 1972, The subependymal layer and neighboring region in the brain of the young rat, J. Comp. Neurol. 146: 277–301.PubMedGoogle Scholar
  72. Pruss, R. M., Bartlett, P., Gavrilovic, J., Lisak, R., and Rattray, S., 1981, Mitogens for glial cells: A comparison of the response of cultured astrocytes, oligodendrocytes and Schwann cells, Brain Res. 254: 19–35.PubMedGoogle Scholar
  73. Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R., Dorfmann, S., Silberberg, D., Gregson, N., Liebowitz, S., and Kennedy, M., 1978, Galactocerebroside is a specific cell surface antigenic marker for oligodendrocytes in culture, Nature (London) 274: 813–816.Google Scholar
  74. Raine, C., and Bornstein, M., 1970, Experimental allergic encephaloyelitis: A light and electron microscope study of remyelination and sclerosis in vitro, J. Neuropathol Exp. Neurol. 29: 552–574.PubMedGoogle Scholar
  75. Raju, T., Bignami, A., and Dahl, D., 1981, In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo, Dev. Biol. 85: 344–357.Google Scholar
  76. Rioux, F., Derbin, C., Margules, S., Joubert, R., and Bisconte, J., 1980, Kinetics of oligoden- drocyte-like cells in primary cultures of mouse embryonic brain, Dev. Biol. 76: 87–99.PubMedGoogle Scholar
  77. Robertson, W., 1899, On a new method of obtaining a black reaction in certain tissue-elements of the central nervous system (platinum method), Scott. Med. Surg. J. 4: 23–30.Google Scholar
  78. Roussel, G., Labourdette, G., and Nussbaum, J. L., 1981, Characterization of oligodendrocytes im primary cultures of brain hemispheres of new born rats, Dev. Biol. 81: 372–378.PubMedGoogle Scholar
  79. Saida, T., Saida, K., Silberberg, D. H., 1979, Demyelination produced by experimental allergic neuritis serum and anti-galactocerebroside antiserum in CNS cultures, Acta Neuropathol. 48: 19–25.PubMedGoogle Scholar
  80. Salzer, J., and Bunge, R. P., 1980, Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration and direct injury, J. Cell Biol. 84: 739–752.PubMedGoogle Scholar
  81. Salzer, J., Bunge, R. P., and Glaser, L., 1980a, Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen, J. Cell Biol. 84: 767–778.PubMedGoogle Scholar
  82. Salzer, J., Williams, A. K., Glaser, L., and Bunge, R. P., 1980b, Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction, J. Cell Biol. 84: 753–766.PubMedGoogle Scholar
  83. Sauer, F. C., 1935, Mitosis in the neural tube, J. Comp. Neurol. 62: 377–405.Google Scholar
  84. Schachner, M., Kim, S., and Zehnli, R., 1981, Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies, Dev. Biol. 83: 328–338.PubMedGoogle Scholar
  85. Schmechel, D., and Rakic, P., 1979, A Golgi study of radial glial cells in developing monkey telecephalon: Morphogenesis and transformation into astrocytes, Anat. Embryol. 156: 115–152.PubMedGoogle Scholar
  86. Sears, T. A., 1982, Neuronal—glial Cell Interrelationships, Dahlem Konferenzen 1982, Springer-Verlag, New York.Google Scholar
  87. Seeds, N., 1973, Differentiation of aggregating brain cell cultures in: Tissue Culture of the Nervous System (G. Sato, ed.), pp. 35–55, Plenum Press, New York.Google Scholar
  88. Seil, F., 1977, Tissue culture studies of demyelinating disease: A critical review, Ann. Neurol. 2: 345–355.PubMedGoogle Scholar
  89. Seil, F., 1979, Cerebellum in tissue culture, Rev. Neurosci. 4: 105–177.Google Scholar
  90. Skoff, R. P., 1975, The fine structure of pulse labelled (3H-thymidine) cells in degenerating rat optic nerve, J. Comp. Neurol. 161: 595–612.PubMedGoogle Scholar
  91. Skoff, R. P., 1980, Neuroglia: A reevaluation of their origin and development, Pathol. Res. Pract. 168: 279–300.PubMedGoogle Scholar
  92. Skoff, R. P., and Vaughn, J. E., 1971, An autoradiographic study of proliferation in degenerating rat optic nerve, J. Comp. Neurol. 141: 133–156.PubMedGoogle Scholar
  93. Skoff, R., Price, D., and Stocks, A., 1976a, Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. I. Cell proliferation, J. Comp. Neurol. 169: 291–312.PubMedGoogle Scholar
  94. Skoff, R., Price, D., and Stocks, A., 19766, Electron microscopic autoradiographis studies of gliogenesis in rat optic nerve. H. Time of origin, J. Comp. Neurol. 179: 313–333.Google Scholar
  95. Smart, I., and Leblond, C. P., 1961, Evidence for division and transformation of neuroglial cells in the mouse brain, as derived from autoradiography after injection of thymidine-H3, J. Comp. Neurol. 116: 349–367.Google Scholar
  96. Sobkowicz, H., Guillery, R., and Bornstein, M., 1968, Neuronal organization in long term cultures of the spinal cord of the fetal mouse, J. Comp. Neurol. 132: 365–395.PubMedGoogle Scholar
  97. Stensaas, L. J., and Stensaas, S. S., 1968, Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. II. Electron microscopy, Z. Zellforsch. Mikrosk. Anat. 86: 184–213.PubMedGoogle Scholar
  98. Sternberger, N., Itoyama, Y., Kies, M., and Webster, H de F., 1978, Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation, Proc. Natl. Acad. Sci. U.S.A. 75: 2521–2524.PubMedGoogle Scholar
  99. Sturrock, R. R., 1976, Light microscopic identification of immature glial cells in semithin sections of the developing mouse corpus callosum, J. Anat. 122: 521–537.PubMedGoogle Scholar
  100. Szuchet, S., Stefansson, K., Wollmann, R., Dawson, G., and Arnason, B. G., 1980, Maintenance of isolated oligodendrocytes in long-term culture, Brain Res. 200: 151–164.PubMedGoogle Scholar
  101. Tennekoon, G., Cohen, S., Price, D., and McKhann, G., 1977, Myelinogenesis in optic nerve: A morphological, autoradiographic and biochemical analysis, J. Cell Biol. 72: 604–616.PubMedGoogle Scholar
  102. Tennekoon, G. I., Kishimoto, Y., Singh, I., Nonaka, A., and Bourre, J., 1980, The differentiation of oligodendrocytes in the rat optic nerve, Dey. Biol. 79: 149–158.Google Scholar
  103. Trapp, B., Honegger, P., Richelson, E., and Webster, H de F., 1979, Morphological differentiation of mechanically dissociated fetal rat brain in aggregating cell cultures, Brain Res. 160: 117–130.PubMedGoogle Scholar
  104. Vaughn, D., and Peters, A., 1974, Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: An electron microscopic study, J. Neurocytol. 3: 405–429.Google Scholar
  105. Vaughn, J. E., 1969, An electron microscopic analysis of gliogenesis in rat optic nerve, Z. Zellforsch. 94: 292–324.Google Scholar
  106. Vaughn, J., 1971, The morphology and development of neuroglial cells, in: Cellular Aspects of Neural Growth and Differentiation ( D. C. Pease, ed.), pp. 103–134, University of California Press, Berkeley, California.Google Scholar
  107. Vaughn, J. E., and Pease, D. C., 1970, Electron microscopic studies of Wallerian degeneration in rat optic nerves. II. Astrocytes, oligodendrocytes and adventitial cells, J. Comp. Neurol. 140: 207–226.PubMedGoogle Scholar
  108. Weinberg, H. J., and Spencer, P. S., 1976, Studies on the control of myelinogenesis. H. Evidence for the neuronal regulation of myelin production, Brian Res. 113: 363–378.Google Scholar
  109. Wood, P., and Bunge, R. P., 1975, Evidence that sensory axons are mitogenic for Schwann cells, Nature (London) 256: 662–664.Google Scholar
  110. Wood, P., Okada, E., and Bunge, R. P., 1980, The use of networks of dissociated dorsal root ganglion neurons to induce myelination by oligodendrocytes in culture, Brain Res. 196: 247–252.PubMedGoogle Scholar
  111. Yavin, Z., and Yavin, E., 1977, Synaptogenesis and myelinogenesis in dissociated cerebral cells from rat embryo or polylysine-coated surfaces, Exp. Brain Res. 29: 137–147.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Patrick Wood
    • 1
  • Richard P. Bunge
    • 1
  1. 1.Department of Anatomy and NeurobiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations