Advertisement

The VENICE Model for Wind Wave Prediction

  • Luigi Cavaleri
  • Luciana Bertotti

Abstract

The venice model has been described by Cavaleri and Malanotte Rizzoli (1981). It is a physical model, based on the ray technique, suitable also for shallow-water applications. We will give here only a short description of the model, particularly the part concerned with shallow-water processes. These are not of interest in the actual study because of its deep-water assumption. Readers interested in the details of the model are referred to the paper quoted.

Keywords

Wind Field Significant Wave Height Nonlinear Energy Transfer Wave Prediction Model Local Wind Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banner, M. L., and W. K. Melville (1976): On the separation of air flow over water waves. J. Fluid. Mech. 77, 825.CrossRefGoogle Scholar
  2. Barnett, T. P. (1968): On the generation, dissipation and prediction of ocean wind waves. J. Geophys. Res. 73, 513.CrossRefGoogle Scholar
  3. Barnett, T. P., and J. C. Wilkerson (1967): On the generation of ocean wind waves as inferred from airborne radar measurements of fetch-limited spectra. J. Mar. Res. 25, 292.Google Scholar
  4. Cavaleri, L., and P. Malanotte Rizzoli (1981): Wind wave prediction in shallow water—theory and application J. Geophys. Res. 86, 10961.CrossRefGoogle Scholar
  5. Collins, J. I. (1972): Prediction of shallow-water spectra. J. Geophys. Res. 77, 2693.CrossRefGoogle Scholar
  6. Ewing, J. A. (1971): A numerical wave prediction model for the North Atlantic Ocean. Dtsch. Hydrogr. Z. 24, 241.CrossRefGoogle Scholar
  7. Gelci, R., H. Cazalé, and J. Vassal, (1957): Prévision de la houle. La méthode des densités spectroangulaires. Bull. Inform. Comité Central Oceanogr. d’Etude Cötes, 9, 416.Google Scholar
  8. Hasselmann, K. (1962): On the nonlinear energy transfer in a gravity-wave spectrum. 1. General theory. J. Fluid Mech. 12, 481.CrossRefGoogle Scholar
  9. Hasselmann, K. (1963): On the nonlinear energy transfer in a gravity-wave spectrum. 2. Conservation theorems, wave — particle correspondence, irreversibility. J. Fluid Mech. 15, 273.CrossRefGoogle Scholar
  10. Hasselmann, K. (1974): On the spectral dissipation of ocean waves due to whitecapping. Boundary — Layer Metorol. 6, 107.Google Scholar
  11. Hasselmann, K., and J. I. Collins (1968): Spectral classification of finite depth gravity waves due to bottom friction. J., Mar. Res. 26, 1.Google Scholar
  12. Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller. D. J. Olbers, K. Richter, W. Sell, and H. Walden (1973): Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSwAP), Dtsch. Hydrogr. Z., Suppl. A 8, (12).Google Scholar
  13. Hasselmann, K., D. B. Ross, P. Müller, and W. Sell (1976): A parametric wave prediction model. J. Phys. Oceanogr. 6, 200.CrossRefGoogle Scholar
  14. Miles, J. W. (1957): On the generation of surface waves by shear flows. J. Fluid Mech. 2, 185.CrossRefGoogle Scholar
  15. Phillips, O. M. (1957): On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417.CrossRefGoogle Scholar
  16. Phillips, O. M. (1958): The equilibrium range in the spectrum of wind-generated ocean waves. J. Fluid Mech. 4, 426.CrossRefGoogle Scholar
  17. Phillips, O. M. (1966): The Dynamics of the Upper Ocean, Cambridge University Press, London, 261 pp.Google Scholar
  18. Resio, D. T. and C. L. Vincent (1977a): A numerical hindcast model for wave spectra on water bodies with irregular shoreline geometry. Part I: Test of non-dimensional growth rates. Miscellaneous Paper H-77-9, Hydraulic Laboratory, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.Google Scholar
  19. Resio, D. T. and C. L. Vincent (1977b): A numerical hindcast model for wave spectra on water bodies with irregular shoreline geometry. Part II: Model verification with observed water data. Miscellaneous Paper H-77-9, Hydraulic Laboratory, U. S. Army Engineer Waterways Experiment Station. Vicksburg, Mississippi.Google Scholar
  20. Willmarth, W. W., and C. E. Woolridge (1962): Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer. J. Fluid Mech. 14, 187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Luigi Cavaleri
    • 1
  • Luciana Bertotti
    • 2
  1. 1.Istituto per lo Studio della Dinamica delle Grandi MasseConsiglio Nazionale delle RichercheVeniceItaly
  2. 2.Associazione Studio Correnti OndePaduaItaly

Personalised recommendations