Routing in All-Optical Networks: Algorithmic and Graph-Theoretic Problems

  • Luisa Gargano
  • Ugo Vaccaro


This paper surveys theoretical results for wavelength—routing in all—optical networks and presents several open problems. We focus our attention on graph-theoretical problems and proof techniques.


Optical Network Connection Request Wavelength Assignment Weighted Tree Conflict Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber, M. Sudan, “Efficient Routing and Scheduling Algorithms for Optical Networks”, Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms SODA’94, 1994, 412–423.Google Scholar
  2. [2]
    R. Ahlswede, L. Gargano, H.S. Haroutunian, L.H. Khachatrian, “Fault—Tolerant Minimum Broadcast Networks”, NETWORKS,27, 1996, 293307.Google Scholar
  3. [3]
    N. Alon, “Eigenvalues and Expanders”, Combinatorica, 6, 1986, 83–96.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    V. Auletta, I. Caraggiannis, C. Kaklamanis, G. Persiano, “Efficient Wavelength Routing with Low—Degree Converters”, Proceedings of DIMACS Workshop on Optical Networks, 1998.Google Scholar
  5. [5]
    L. A. Bassalygo, “Asymptotically Optimal Switching Circuits, Problems of Information Transmission, 1981, 206–211.Google Scholar
  6. [6]
    B. Beauquier, “All-to-All Communication in Some Wavelength-Routed All—Optical Networks”, INRIA Research Report,3452.Google Scholar
  7. [7]
    B. Beauquier, P. Hell, S. Perennes, “Optimal Wavelength-Routed Multi-casting”, Discr. Appl. Math 84, 1998, 15–20.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    B. Beauquier, J.-C. Bermond, L. Gargano, P. Hell, S. Perennes, and U. Vaccaro, “Graph Problems Arising from Wavelength—Routing in All—Optical Networks”, 2nd Workshop on Optics and Computer Science WOCS,Geneve, Switzerland, 1997Google Scholar
  9. [9]
    C. Berge, Graphs,North—Holland.Google Scholar
  10. [10]
    J.-C. Bermond, N. Homobono, and C. Peyrat, “Large Fault—Tolerant Interconnection Networks”, Graphs and Combinatorics 5, 1989, 107–123.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    J.—C.. Bermond, L. Gargano, S. Perennes, A.A. Rescigno, U. Vaccaro, “Efficient Collective Communication in Optical Networks”, Proceedings of 23th International Colloquium on Automata, Languages, and Programming ICALP 96, LNCS, 1099, Springer-Verlag, 1996, 574–585.Google Scholar
  12. [12]
    F.R.K. Chung, Spectral Graph Theory, CBMS 92, American Mathematical Society, 1997.Google Scholar
  13. [13]
    T. Erlebach and K. Jansen. “Scheduling of Virtual Connections in Fast Networks”, Proc. of 4th Workshop on Parallel Systems and Algorithms PASA ‘86, 1996, 13–32.Google Scholar
  14. [14]
    L. Gargano, “Limited Wavelength Conversion in All-Optical Tree Networks”, Proceedings of 25th International Colloquium on Automata, Languages, and Programming ICALP 98, Aalborg, 1998.Google Scholar
  15. [15]
    L. Gargano, P. Hell, S. Perennes, “Colouring All Directed Paths in a Symmetric Tree with Applications to WDM Routing”, Proceedings of 24th International Colloquium on Automata, Languages, and Programming ICALP 97, P. Degano, R. Gorrieri, A. Marchetti—Spaccamela Eds, LNCS, 1256, Springer-Verlag, 1997, 505–515.Google Scholar
  16. [16]
    O. Gerstel, S. Kutten, R. Ramaswami and G. Sasaki, “Wavelength Conversion in All-Optical Ring Networks”, Proceedings of 6th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing PODC’97, 1997.Google Scholar
  17. [17]
    M. C. Golumbic and R. E. Jamison. “The Edge Intersection Graphs of Paths in a Tree”, Journ. Comb. Theo., Series B, 38, 1985, 8–22.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    M. C. Golumbic and R. E. Jamison. “Edge and Vertex Intersection of Paths in a Tree”, Discrete Mathematics, 55, 1985, 151–159.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    P. E. Green, Fiber-Optic Communication Networks, Prentice—Hall, 1992.Google Scholar
  20. [20]
    P. E. Green, “Optical Networking Update”, IEEE J. Selected Areas in Comm., vol. 14, 1996, 764–779.CrossRefGoogle Scholar
  21. [21]
    M. C. Heydemann, J-C. Meyer arid D. Sotteau, “Orr Forwarding Indices of Networks”, Discrete Applied Mathematics 23, 1989, 103–123.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    K. Kaklamanis G. Persiano, T. Erlebach, K. Jansen, “Constrained Bipartite Edge Coloring with Applications to Wavelength Routing” Proceedings of 24th International Colloquium on Automata, Languages, and Programming ICALP 97, Bologna, Italy, 1997.Google Scholar
  23. [23]
    I.A. Karapetian, “On Coloring of Arc Graphs”, Dokladi of the Academy of Science of the Armenian SSR, 70 (5), 1980, 306–311.Google Scholar
  24. [24]
    R. Klasing, “Methods and Problems of Wavelength—Routing in All—Optical Networks”, Proceedings of 23rd International Symposium on Mathematical Foundations of Computer Science MFSC’98, 1998, LNCS 1450.Google Scholar
  25. [25]
    J. Kleimberg, E. Kumar, “Wavelength Conversion in Optical Networks”, Proceedings of SODA’99, 1999.Google Scholar
  26. [26]
    V. Kumar, “Approximating Circular Arc Colouring and Bandwidth Allocation in All-Optical Ring Networks”, Proceedings of the International Workshop APPROX’98: Approximation Algorithms for Combinatorial Optimization, Klaus Jansen and Jose Rolim Eds., LNCS 1444, 147–158.Google Scholar
  27. [27]
    E. Kumar, E. Schwabe, “Improved Access to Optical Bandwidth in Trees”, Proceedings of SODA’97, 1997.Google Scholar
  28. [28]
    A. Lubotzky, R. Phillips, P. Sarnak, “Ramanujan Graphs”, Combinatorica 8, 1988, 261–278.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    W. Mader, “Minimale n-fach Kantenzusammenhangende Graphen”, Math. Ann. 191, 1971, 21–28.Google Scholar
  30. [30]
    G.A. Margulis, “Explicit Group—Theoretic Constructions of Combinatorial Schemes and their Applications for the Construction of Expanders and Concentrators”, Problemy Peredaci Informacii, 1988.Google Scholar
  31. [31]
    A. D. McAulay, Optical Computer Architectures, John Wiley, 1991.Google Scholar
  32. [32]
    C. L. Monma and V. K. Wei. “Intersection Graphs of Paths in a Tree”, Journal of Combinatorial Theory, Series B, 1986, 141–181.Google Scholar
  33. [33]
    R. Ramaswami, G.H. Sasaki, “Multiwavelength Optical Networks with Limited Wavelength Conversion” Proc. of IEEE Infocom 97, 1997.Google Scholar
  34. [34]
    R. Ramaswami, “Multi-Wavelength Lightwave Networks for Computer Communication”, IEEE Comm. Magazine 31, 1993, 78–88.CrossRefGoogle Scholar
  35. [35]
    R.M. Tanner, “Explicit Construction of Concentrators from Generalized n-gons”, SIAM J. Alg. Discr. Meth., 5, 1984, 287–293.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    A. Tucker. “Coloring a Family of Circular Arcs”, SIAM J. Appl. Math. 29, No. 3, 1975, 493–502.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    R.J. Vetter and D.H.C. Du, “Distributed Computing with High-Speed Optical Networks”, IEEE Computer 26, 1993, 8–18.CrossRefGoogle Scholar
  38. [38]
    G. Wilfong, P. Winkler, “Ring Routing and Wavelength Translation”, Proceedings of SODA’98, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Luisa Gargano
    • 1
  • Ugo Vaccaro
    • 1
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissi (SA)Italy

Personalised recommendations