Skip to main content

Abstract

In 1978, Rudolf Ahlswede and David Daykin published a theorem which says that a certain inequality on nonnegative real valued functions for pairs of points in a finite distributive lattice extends additively to pairs of lattice subsets. It is an elegant theorem with widespread applications to inequalities for systems of subsets, linear extensions of partially ordered sets, and probabilistic correlation. We review the theorem and its applications, and describe a recent generalization to n-tuples of points and subsets in distributive lattices. Although many implications of the Ahlswede-Daykin theorem follow from the weaker hypotheses of the widely-cited FKG theorem, several important implications are noted to require the stronger hypotheses of the basic theorem of Ahlswede and Daykin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Aharoni and R. Holzman, “Two and a half remarks on the Marica- Schönheim inequality”, J. London Math. Soc., (2), 48, 1993, 385–395.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Aharoni and U. Keich, “A generalization of the Ahlswede-Daykin inequality”, Discrete Math., 152, 1996, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Ahlswede and D. E. Daykin, “An inequality for the weights of two families of sets, their unions and intersections”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 43, 1978, 183–185.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Ahlswede and D. E. Daykin, “Inequalities for a pair of maps S x S → S with S a finite set”, Math. Z., 165, 1979, 267–289.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Birkhoff, Lattice Theory, 3rd ed. Providence, RI, Amer. Mathematical Soc., 1967.

    MATH  Google Scholar 

  6. B. Bollobâs, Combinatorics, Cambridge, Cambridge Univ. Press., 1986.

    MATH  Google Scholar 

  7. B. Bollobâs and G. Brightwell, “Parallel selection with high probability”, SIAM J. Discrete Math., 3, 1990, 21–31.

    Article  MathSciNet  Google Scholar 

  8. G.R. Brightwell, “Universal correlations in finite posets”, Order, 2, 1985, 129–144.

    Article  MathSciNet  MATH  Google Scholar 

  9. G.R. Brightwell, “Some correlation inequalities in finite posets”, Order, 2, 1986, 387–402.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. M. Burton Jr. and M. M. Franzosa, “Positive dependence properties of point processes”, Ann. Probab., 18, 1990, 359–377.

    Article  MathSciNet  MATH  Google Scholar 

  11. D.E. Daykin, “A lattice is distributive iff”, Nanta Math., 10, 1977, 58–60.

    MathSciNet  MATH  Google Scholar 

  12. D.E. Daykin and L. Lovâsz, “The number of values of a Boolean function”, J. London Math. Soc., (2) 12, 1976, 225–230.

    Article  MathSciNet  MATH  Google Scholar 

  13. P.C. Fishburn, “A correlational inequality for linear extensions of a poset”, Order, 1, 1984, 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  14. P.C. Fishburn, “Maximizing a correlational ratio for linear extensions of posets”, Order, 3, 1986, 159–167.

    Article  MathSciNet  MATH  Google Scholar 

  15. P.C. Fishburn, “A note on linear extensions and incomparable pairs”, J. Combin. Theory Ser. A, 56, 1991, 290–296.

    Article  MathSciNet  MATH  Google Scholar 

  16. P.C. Fishburn, “Correlation in partially ordered sets”, Discrete Appl. Math., 39, 1992, 173–191.

    Article  MathSciNet  MATH  Google Scholar 

  17. P.C. Fishburn, P.G. Doyle and L.A. Shepp, “The match set of a random permutation has the FKG property”, Ann. Probab., 16, 1988, 1194–1214.

    Article  MathSciNet  MATH  Google Scholar 

  18. C.M. Fortuin, P.N. Kasteleyn and J. Ginibre, “Correlation inequalities for some partially ordered sets” Comm. Math. Phys., 22, 1971, 89–103.

    Article  MathSciNet  MATH  Google Scholar 

  19. R.L. Graham, “Linear extensions of partial orders and the FKG inequality”, Ordered Sets, I. Rival, ed., Dordrecht, Reidel., 1982, 213–236.

    Google Scholar 

  20. R.L. Graham, “Applications of the FKG inequality and its relatives”, Proceedings 12th International Symposium on Mathematical Programming. Berlin, Springer, 1983, 115–131.

    Google Scholar 

  21. R.L. Graham, A.C. Yao and F.F. Yao, “Some monotonicity properties of partial orders”, SIAM J. Algebraic Discrete Methods, 1, 1980, 251–258.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Holley, “Remarks on the FKG inequalities”, Comm. Math. Phys., 36, 1974, 227–231.

    Article  MathSciNet  Google Scholar 

  23. F.K. Hwang and L.A. Shepp, “Some inequalities concerning random subsets of a set”, IEEE Trans. Information Theory, 33, 1987, 596–598.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Joag-Dev, “Association of matchmakers”, mimeo, Department of Statistics, University of Illinois, 1985.

    Google Scholar 

  25. K. Joag-Dev, L.A. Shepp and R.A. Vitale, “Remarks and open problems in the area of the FKG inequality”, IMS Lecture Notes-Monograph Series, 5, 1984, 121–126.

    Article  MathSciNet  Google Scholar 

  26. J.H.B. Kemperman, “On the FKG inequality for measures on a partially ordered space”, Indag. Math., 39, 1977, 313–331.

    MathSciNet  Google Scholar 

  27. D.J. Kleitman, “Families of non-disjoint sets”, J. Combin. Theory, 1, 1966, 153–155.

    Article  MathSciNet  MATH  Google Scholar 

  28. D.J. Kleitman and J. B. Shearer, “Some monotonicity properties of partial orders”, Stud. Appl. Math., 65, 1981, 81–83.

    MathSciNet  MATH  Google Scholar 

  29. Z. Lengvârszky, “The Marica-Schönheim inequality in lattices”, Bull. London Math. Soc., 28, 1996, 449–454.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Marica and J. Schönheim, “Differences of sets and a problem of Graham”, Canad. Math. Bull., 12, 1969, 635–637.

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Rinott and M. Saks, “On FKG-type and permanental inequalities”, Proc. 1991 AMS-IMS-SIAM Joint Conf. on Stochastic Inequalities, IMS Lecture Series, M. Shaked and Y. L. Tong, eds., 1991.

    Google Scholar 

  32. Y. Rinott and M. Saks (n.d.), “Correlation inequalities and a conjecture for permanents”, Cornbinatorica.

    Google Scholar 

  33. P.D. Seymour, “On incomparable collections of sets”, Mathematika, 20, 1973, 208–209.

    Article  MathSciNet  MATH  Google Scholar 

  34. L.A. Shepp, “The FKG property and some monotonicity properties of partial orders”, SIAM J. Algebraic Discrete Methods, 1, 1980, 295–299.

    Article  MathSciNet  MATH  Google Scholar 

  35. L.A. Shepp, “The XYZ conjecture and the FKG inequality”, Ann. Probab., 10, 1982, 824–827.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Szpilrajn, “Sur l’extension de l’ordre partiel”, Fund. Math., 16, 1930, 386–389.

    MATH  Google Scholar 

  37. J. van den Berg and U. Fiebig, “On a combinatorial conjecture concerning disjoint occurrences of events”, Ann. Probab., 15, 1987, 354–374.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. van den Berg and H. Kesten, “Inequalities with applications to percolation and reliability”, J. Appl. Probab., 22, 1985, 556–569.

    Article  MathSciNet  MATH  Google Scholar 

  39. P.M. Winkler, “Correlation among partial orders”, SIAM J. Algebraic Discrete Methods, 4, 1983, 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  40. P.M. Winkler, “Correlation and order”, Contemp. Math., 57, 1986, 151–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fishburn, P.C., Shepp, L.A. (2000). The Ahlswede-Daykin Theorem. In: Althöfer, I., et al. Numbers, Information and Complexity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6048-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6048-4_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4967-7

  • Online ISBN: 978-1-4757-6048-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics