On Prefix-Free and Suffix-Free Sequences of Integers

  • Rudolf Ahlswede
  • Levon H. Khachatrian
  • András Sárközy
Chapter

Abstract

The set of the positive integers and positive square—free integers are denoted by IN and IN*, respectively, and we write IN(n) = IN ∩ [1, n], IN* (n) = IN* ∩ [1, n], where [1, n] = {1, 2, ... , n}. The set of primes is denoted by P. The smallest and greatest prime factors of the positive integer n are denoted by p(n) and P(n), respectively. ω(n) denotes the number of distinct prime factors of n, while Ω(n) denotes the number of prime factors of n counted with multiplicity:
$$\omega \left( n \right)\, = \,\sum\limits_{p|n} {1,} \,\Omega \left( n \right)\, = \,\sum\limits_{{p^\alpha }\parallel n} {\alpha .} $$
µ(n) denotes the Möbius function.

Keywords

Prefix Univer Suffix Alsb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Ahlswede, L. Khachatrian and A. Sârközy, “On the counting function of primitive sets of integers”, Preprint 98–077, SFB 343Diskrete Strukturen in der Mathematik”,Universität Bielefeld, submitted to J. Number Theory.Google Scholar
  2. [2]
    R. Ahlswede and L.H. Khachatrian, “Classical results on primitive and recent results on cross-primitive sequences”, in: The Mathematics of Paul Erdös, vol. I, eds.R.L. Graham and J. Nesetril, Algorithms and Combinatorics 13, Springer-Verlag, 1997; 104–116.Google Scholar
  3. [3]
    A.S. Besicovitch, “On the density of certain sequences“, Math. Ann. 110, 1934, 336–341.MathSciNetCrossRefGoogle Scholar
  4. [4]
    F. Behrend, “On sequences of numbers not divisible by one another”, J. London Math. Soc., 10, 1935, 42–44.CrossRefGoogle Scholar
  5. [5]
    P. Erdös, “Note on sequences of integers no one of which is divisible by any other”, J. London Math. Soc., 10, 1935, 126–128.CrossRefGoogle Scholar
  6. [6]
    P. Erdös, “A generalization of a theorem of Besicovitch”, J. London Math. Soc., 11, 1935, 92–98.CrossRefGoogle Scholar
  7. [7]
    P. Erdös, A. Sârközy and E. Szemerédi, “On a theorem of Behrend“, J. Australian Math. Soc., 7, 1967, 9–16.MATHCrossRefGoogle Scholar
  8. [8]
    P. Erdös, A. Sârközy and E. Szemerédi, “On divisibility properties of sequences of integers”, Coll. Math. Soc. J. Bolyai, 2, 1970, 35–49.Google Scholar
  9. [9]
    H. Halberstam and K.F. Roth, “Sequences”, Springer-Verlag, BerlinHeidelberg-New York, 1983.MATHCrossRefGoogle Scholar
  10. [10]
    A. Sârközy, “On divisibility properties of sequences of integers”, in: The Mathematics of Paul Erdös, eds. R.L. Graham and J. Nesetril, Algorithms and Combinatorics 13, Springer-Verlag, 1997, 241–250.Google Scholar
  11. [11]
    A. Selberg, “Note on a paper by L.G. Sathe”, J. Indian Math. Soc., 18, 1954, 83–87.MathSciNetMATHGoogle Scholar
  12. [12]
    H. Davenport and P. Erdös, “On sequences of positive integers”, Acta Arith., 2, 1936, 147–151.Google Scholar
  13. [13]
    G.H. Hardy and S. Ramanujan, “The normal number of prime factors of a number n”, Quarterly J. Math., 48, 1920, 76–92.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Rudolf Ahlswede
    • 1
  • Levon H. Khachatrian
    • 1
  • András Sárközy
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Department of Algebra and Number TheoryEötvös UniversityBudapestHungary

Personalised recommendations