Advertisement

An L-Function of Degree 27 for Spin9

  • Daniel Bump
  • David Ginzburg
Part of the Developments in Mathematics book series (DEVM, volume 10)

Abstract

This paper studies a Rankin-Selberg integral for a degree 27 L-function on Spin(9). It makes use of an Eisenstein series on the exceptional group F 4.

Key words

Rankin-Selberg integral standard L-function Spin L-function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bourbaki, ’Eléments de mathématique. Groupes et algbres de Lie. Chap. IV, Vet VI, Hermann, 1968.Google Scholar
  2. 2.
    D. Bump and D. Ginzburg, “The Adjoint L-function of GL,” J. Reine Angew. Math. 505 (4) (1998), 119–172.MathSciNetzbMATHGoogle Scholar
  3. 3.
    R. Carter, Simple Groups of Lie Type, Wiley-Interscience, 1972.Google Scholar
  4. 4.
    W. Casselman and J. Shalika, “The unramified principal series of p-adic groups, II: The Whittaker function,” Campos. Math. 41 (1980), 207–231.MathSciNetzbMATHGoogle Scholar
  5. 5.
    D. Ginzburg, “On Spin L-functions for Orthogonal Groups,” Duke Math. J. 77 (1995), 753–798.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    D. Ginzburg, “A Rankin-Selberg integral for the adjoint L-function of Sp,” Israel.1. Math 95 (4) (1996), 301–339.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    D. Ginzburg and D. Jiang, “A Siegel-Weil identity for G2 and on Poles of L-functions,” J. of Number Theory 82 (2000), 256–287.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    D. Ginzburg and S. Rallis, “A Tower of Rankin-Selberg Integrals,” IMRN 4 (1994), 201–208.MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. Kac, “Some remarks on nilpotent orbits,” J. Algebra 64 (1980), 190–213.Google Scholar
  10. 10.
    D. Littlewood, “On invariants under restricted groups.” Philos. Trans. Roy. Sec. A 239 (1944), 387–417.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    I. Macdonald, “Symmetric Functions and Hall Polynomials.” 2nd edn., Oxford, 1995.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Daniel Bump
    • 1
  • David Ginzburg
    • 2
  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.School of Mathematical Sciences, Sackler Faculty of Exact SciencesTel Aviv UniversityRamat-AvivIsrael

Personalised recommendations