Advertisement

More Primes and Polynomials

  • P. D. T. A. Elliott
Part of the Developments in Mathematics book series (DEVM, volume 10)

Abstract

Triplets of polynomials in four variables with rational coefficients and every term of arbitrarily high degree are exhibited. At least one polynomial in each triplet vanishes on infinitely many integer points whose coordinates are all prime.

Key words

primes polynomials products infinite abelian groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Berrizbeitia and P.D.T.A. Elliott. “On products of shifted primes.” The Ramanujan Journal 2 (1998), 201–217.MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Bombieri, “On the large sieve,” Mathematika 12 (1965), 201–225.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    E. Bombieri, J. Friedlander, and H. Iwaniec, “Primes in arithmetic progressions to large moduli;” Acta Math. 156 (1986), 203–251.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. Chen, “On the representation of a large even integer as the sum of a prime and the product of at most two primes,” Kexue Torgbao 17 (1966), 385–386 (Chinese).Google Scholar
  5. 5.
    J. Chen. “On the representation of a large even integer as the sum of a prime and the product of at most two primes;’ Sci. Sinica 16 (1973). 157–176.MathSciNetzbMATHGoogle Scholar
  6. 6.
    P.D.T.A. Elliott, “On a conjecture of Kâtai,” Acta Arithmetica XXVI (1974), 11–20.Google Scholar
  7. 7.
    P.D.T.A. Elliott, “The multiplicative group of rationals generated by the shifted primes, 1,’ J. reine und ang. Math. 463 (1995), 169–216.zbMATHGoogle Scholar
  8. 8.
    P.D.T.A. Elliott, “Products of shifted primes. Multiplicative analogues of Goldbach’s problems, II,” The Ramanujan Journal 2 (1998). 201–217.zbMATHCrossRefGoogle Scholar
  9. 9.
    P.D.T.A. Elliott, “The multiplicative group of rationals generated by the shifted primes, 11.” J. reine und ang. Math. 519 (2000), 59–71.zbMATHGoogle Scholar
  10. 10.
    P.D.T.A. Elliott, “Primes, products and polynomials.” I nventiones Mathematicae 149 (2002), 453–487.zbMATHCrossRefGoogle Scholar
  11. 11.
    P.D.T.A. Elliott, “Probabilistic number theory and its ramifications,” RIMS Kokyuroku 1219, Analytic Number Theory-Expectations for the 21 th Century, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, July 2001, 33–50.Google Scholar
  12. 12.
    H. Halbertstam and H.-E. Richert. Sieve Methods, Academic Press, London, New York, San Francisco, 1974.Google Scholar
  13. 13.
    P. Kuhn. “Zur Viggo Brun’schen Siebmethode. 1, Norski Vd. Setsk. Forth. Trondhjetn 14 (39) (1941), 145–148.zbMATHGoogle Scholar
  14. 14.
    Chengdong Pan and Chengbaio Pan. Goldbach Conjecture. Science Press. Beijing, China. 1992.zbMATHGoogle Scholar
  15. 15.
    K. Prachar, Prim:ahlverteilung, Grund. der math. Wiss.. Springer-Verlag, Berlin, Göttingen. Heidelberg, 1957.Google Scholar
  16. 16.
    L.G. Schnirelmann. “On additive properties of numbers,” Rostov, ND, l:y. Donsk. Polvtech, in-ta 14 (1930), 3–28; (Russian).Google Scholar
  17. 17.
    L.G. Schnirelmann, “Über additive Eigenschaften von Zahlen,” Math. Ann 107 (1933), 649–690.MathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.Google Scholar
  19. 19.
    E.C. Titchmarsh, The Theory of the Riemann Zeta Function. Oxford University Press, 1951.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • P. D. T. A. Elliott
    • 1
  1. 1.Department of MathematicsUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations