Advertisement

On the Asymptotic Behaviour of General Partition Functions, II

  • Jean-Louis Nicolas
  • András Sárközy
Part of the Developments in Mathematics book series (DEVM, volume 10)

Abstract

Let A = {a 1, a 2,...} be a set of positive integers and let p A (n) and q A (n) denote the number of partitions of n into a’s, resp. distinct a’s. In an earlier paper the authors studied large values of \( \frac{{\log \left( {\max \left( {2,p\mathcal{A}\left( n \right)} \right)} \right)}}{{\log \left( {\max \left( {2,q\mathcal{A}\left( n \right)} \right)} \right)}}. \) In this paper the small values of the same quotient are studied.

Key words

Partitions generating functions asymptotic estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison Wesley, 1976.Google Scholar
  2. 2.
    P.T. Bateman and P. Erdós, “Monotonicity of partition functions,” Mathematika 3 (1956), 1–14.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    L. Comtet, Analyse Combinatoire, Vol. 1, PUF, Paris, 1970.Google Scholar
  4. 4.
    J. Dixmier and J.-L. Nicolas, “Partitions without small parts,” Coll. Math. Soc. J. Bolyai 51 (1987), 9–33.MathSciNetGoogle Scholar
  5. 5.
    J. Dixmier and J.-L. Nicolas, “Partitions sans petits sommants,” in A Tribute to Paul Erdós (A. Baker, B. Bollobâs, and A. Hajnal, eds. ), Cambridge University Press, 1990, pp. 121–152.CrossRefGoogle Scholar
  6. 6.
    P. Erdós, J.-L. Nicolas, and A. Särközy, “On the number of partitions without a given subsum II,” in Analytic Number Theory (B. Berndt, H. Diamond, H. Halberstam, and A. Hildebrand, eds. ), Birkhäuser, 1990, pp. 205–234.Google Scholar
  7. 7.
    G.H. Hardy and S. Ramanujan, “Asymptotic formulae for the distribution of integers of various types,” Proc. London Math. Soc. 16(2) (1917), 112–132 and Collected Papers of S. Ramanujan 245–261.Google Scholar
  8. 8.
    G.H. Hardy and S. Ramanujan, “Asymptotic formulae in combinatory analysis,” Proc. London Math. Soc. 17(2) (1918), 75–115 and Collected Papers of S. Ramanujan, 276–309, Cambridge University Press, 1927, reprinted by Chelsea, New-York, 1962.Google Scholar
  9. 9.
    M.B. Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, No. 195, Springer-Verlag, 2000.Google Scholar
  10. 10.
    J.-L. Nicolas and A. Sârközy, “On the asymptotic behaviour of general partition functions,” The Ramanujan Journal 4 (2000), 29–39.zbMATHCrossRefGoogle Scholar
  11. 11.
    J.-L. Nicolas and A. Sârközy, “On two partition problems,” Acta Math. Hangar. 77 (1997), 95–121.zbMATHCrossRefGoogle Scholar
  12. 12.
    J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1975.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jean-Louis Nicolas
    • 1
  • András Sárközy
    • 2
  1. 1.Institut Girard Desargues, UMR 5028, MathématiquesUniversité Claude BernardVILLEURBANNE cedexFrance
  2. 2.Department of Algebra and Number TheoryEötvös Loránd UniversityBudapestHungary

Personalised recommendations