# Exact Penalty Functions for Nondifferentiable Programming Problems

• G. Di Pillo
• F. Facchinei
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)

## Abstract

In recent years an increasing attention has been devoted to the use of nondifferentiable exact penalty functions for the solution of nonlinear programming problems. However, as pointed out in [22], virtually all the published literature on exact penalty functions treats one of two cases: either the nonlinear programming problem is a convex problem (see, e.g., [2], [18], [23]), or it is a smooth problem (see, e.g., [1], [3–5], [10–13], [16], [18–20]). Exact penalty functions for nonlinear programming problems neither convex nor smooth, have been considered in [6], [21], [22], where locally lipschitz problems are dealt with.

## Keywords

Penalty Function Lipschitz Function Generalize Gradient Nonlinear Programming Problem Exact Penalty
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

1. [1]
M.S. Bazaraa and J.J. Goode. “Sufficient conditions for a globally exact penalty function without convexity”. Math. Progr. Study, 19 (1982), pp. 1–15.
2. [2]
D.P. Bertsekas. “Necessary and sufficient conditions for a penalty method to be exact”. Math. Programming, 9 (1975), pp. 87–99.
3. [3]
D.P. Bertsekas. “Constrained optimization and Lagrange multiplier methods”. Academic Press, New York (1982).Google Scholar
4. [4]
C. Charalambous. “A lower bound for the controlling parameters of the exact penalty function”. Math. Programming, 15 (1978), pp. 278–290.
5. [5]
C. Charalambous. “On conditions for optimality of a class of nondifferentiable functions”. J. Optim. Theory Appl., 43 (1984), pp. 135–142.
6. [6]
F.H. Clarke. “Generalized gradients of Lipschitz functionals”. Mathematics Research Center, Technical Summary Report, University of Wisconsin, Madison, WI. 43 (1976), pp. 135–142.Google Scholar
7. [7]
F.H. Clarke. “Optimization and nonsmooth analysis”. J. Wiley, New York (1983).Google Scholar
8. [8]
G. Di Pillo and L. Grippo. “An exact penalty method with global convergence properties for nonlinear programming problems”. Math. Programming, 36 (1986), pp. 1–18.
9. [9]
G. Di Pillo and L. Grippo. “Globally exact nondifferentiable penalty functions”. Report 10. 87, Dipartimento di Informatica e Sistemistica, University of Rome “La Sapienza”, Rome (1987).Google Scholar
10. [10]
G. Di Pillo and L. Grippo. “On the exactness of a class of nondifferentiable penalty functions”. Jou. Optimization. Th. Appl., 57 (1988), pp. 397–408.Google Scholar
11. [11]
J.P. Evans, F.J. Gould and J.W. Tolle. “Exact penalty functions in nonlinear programming”. Math. Programming, 4 (1973), pp. 72–97.
12. [12]
R. Fletcher. “Practical methods of optimization”. Vol. 2, J. Wiley, New York (1981).
13. [13]
S.P. Han and O.L. Mangasarian. “Exact penalty functions in nonlinear programming”. Math. Programming, 17 (1979), pp. 251–269.
14. [14]
J.B. Hiriart-Urruty. “Refinements of necessary optimality conditions in nondifferentiable programming II”. Math. Prog. Study, 19 (1982), pp. 120–139.
15. [15]
R.A. Horn and C.A. Johnson. “Matrix analysis”. Cambridge University Press, Cambridge (1985).
16. [16]
S. Howe. “New conditions for the exactness of a simple penalty function”. SIAM J. Control, 11 (1973), pp. 378–381.
17. [17]
O.L. Mangasarian. “Nonlinear Programming”. McGraw-Hill, Inc., Cambridge (1969).Google Scholar
18. [18]
O.L. Mangasarian. “Sufficiency of exact penalty minimization”. SIAM J. Control Optim., 23 (1985), pp. 30–37.
19. [19]
T. Pietrzykowski. “An exact potential method for constrained maxima”. SIAM J. Numer. Anal., 6 (1969), pp. 299–304.
20. [20]
T. Pietrzykowski. “The potential method for conditional maxima in the locally compact metric spaces”. Numer. Math., 14 (1970), pp. 325–329.
21. [21]
E. Polak, D.Q. Mayne and Y. Wardi. “On the extension of constrained optimization algorithms from differentiable to nondifferentiable problems”. SIAM J. Control Optim., 21 (1983), pp. 190–203.
22. [22]
E. Rosenberg. “Exact penalty functions and stability in locally Lipschitz programming”. Math. Programming, 30 (1984), pp. 340–356.
23. [23]
W.I. Zangwill. “Non-linear programming via penalty functions”. Management Sci.. 13 (1967), pp. 344–358.

## Copyright information

© Springer Science+Business Media New York 1989

## Authors and Affiliations

• G. Di Pillo
• 1
• F. Facchinei
• 1
1. 1.Dept. of Systems and Computer ScienceUniv. “La Sapienza”RomeItaly