Nonsmooth Optimization and Dual Bounds

  • N. Z. Shor
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)


Lagrange function is a source for getting so called “dual bounds” for a wide class of mathematical programming problems: to find
$$f* = \inf {f_o}\left( x \right);X \subseteq {\mathbb{R}^n}$$
; subject to the constraints:
$${f_i}\left( x \right) \leqslant 0,i = 1, \ldots ,m$$


Lagrange Function Quadratic Constraint Quadratic Problem Nonsmooth Optimization Quadratic Optimization Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.Z. Shor. “Minimization methods for non-differentiable functions”. Springer-Verlag (1985).Google Scholar
  2. [2]
    V.S. Michalevich, V.A. Trubin, N.Z. Shor. “Mathematical methods for solving optimization problems of production”. Transport planning, Moscow, Nauka (1986), (in Russian).Google Scholar
  3. [3]
    N.Z. Shor. “Quadratic optimization problems”. Izvestia of AN USSR. Technical Cybernetics, Moscow, N. 1 (1987), pp. 128–139.MathSciNetGoogle Scholar
  4. [4]
    N.Z. Shor. “One idea of getting global extremus in polynomial problems of mathematical programming”. Kibernetica, Kiev, N. 5 (1987), pp. 102–106.MathSciNetGoogle Scholar
  5. [5]
    N.Z. Shor. “One class estimates of global minimum of polynomial functions”. Kibernetica, Kiev, N. 6 (1987), pp. 9–11.MathSciNetGoogle Scholar
  6. [6]
    D. Hilbert. “Uber die darstellung definiter Formen als Summen von Formen quadraten”. Math. Ann., Vol. 22 (1888), pp. 342–350.MathSciNetCrossRefGoogle Scholar
  7. [7]
    L. Lovasz. “On the Shannon capacity of a graph”. IEEE Trans. Inform. Theory (1979), T-25,M.Google Scholar
  8. [8]
    N.Z. Shor, S. I. Stecenko. “Quadratic Boolean problems and Lovasz’s bounds”. Abstract IFIP Conference, Budapest (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • N. Z. Shor
    • 1
  1. 1.V.M. Glushkov Institute of CyberneticsKievUSSR

Personalised recommendations