Advertisement

Subdifferential Analysis and Plates Subjected to Unilateral Constraints

  • A. Marino
  • C. Saccon
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)

Abstract

The problems which lead to study differential properties of functionals which are not smooth, in a classical sense, form a very rich class and may concern very different fields of mathematics.

Keywords

Evolution Equation Variational Inequality Convex Function Monotone Operator Maximal Monotone Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Brezis. “Operateurs maximaux monotones et semigroups de contraction dans les espaces de Hilbert”. North Holland Mathematics Studies, No. 5,Notas de blatematica,50, Amsterdam-London (1973).Google Scholar
  2. [2]
    G. Chobanov, A. Marino and D. Scolozzi. “Evolution equations for the eigenvalue problem for the Laplace operator with respect to an obstacle”. To appear in Ann. Scuola Normale Superiore, Pisa.Google Scholar
  3. [3]
    G. Chobanov, A. Marino and D. Scolozzi. “Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle and nontangency conditions”. Nonlinear Anal. Th. Meth. and Appl. Google Scholar
  4. [4]
    G. Chobanov, D. Scolozzi. To appearGoogle Scholar
  5. [5]
    F.H. Clarke. “Optimization and non-smooth analysis”. John Wiley (1983).Google Scholar
  6. [6]
    E. De Giorgi, M. Degiovanni, A. Marino, M. Tosques. “Evolution equations for a class of non linear operators”. Atti Accademia Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur, (8) 75 (1983), pp. 1–8.MATHGoogle Scholar
  7. [7]
    E. De Giorgi, A. Marino, M. Tosques. “Problemi di evoluzione in spazi metrici e curve di massima pendenza”. Atti Accademia Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur, (8) 68 (1980), pp. 180–187.MATHGoogle Scholar
  8. [8]
    E. De Giorgi, A. Marino, M. Tosques. “Funzioni (p-q)-convesse”. Atti Accademia Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur, (8) 73 (1980), pp. 6–14.Google Scholar
  9. [9]
    M. Degiovanni, A. Marino, M. Tosques. “General properties of (p-q)-convex functions and (p-q)-monotone operators”. Ricerche Mat. 32 (1983), pp. 285–319.MathSciNetMATHGoogle Scholar
  10. [10]
    M. Degiovanni, A. Marino, M. Tosques. “Evolution equations associated with (pq)-convex functions and (p-q)-monotone operators”. Ricerche Mat. 33 (1984), pp. 81–112.MathSciNetMATHGoogle Scholar
  11. [11]
    M. Degiovanni, A. Marino, M. Tosques. “Evolution equations with lack of convexity”. Nonlinear Anal. Th. M.th. and Appl., Vol. 9, 12 (1925), pp. 1401–1443.Google Scholar
  12. [12]
    M. De Giovanni, M. Tosques. “Evolution equations for (0,1)-monotone operators. Boll. Un. Mat. Ital. (6), 6-B pp.537–568.Google Scholar
  13. [13]
    D. Kinderleher, G. Stampacchia. “An introduction to variational inequalities and their applications”. Pure and Appl. Mathematics, 88, Academic Press, New York, London, Toronto, Ontario (1980).Google Scholar
  14. [14]
    R.S. Kubrusly, J.T. Oden. “Nonlinear eigenvalue problems characterized by variational inequalities with application to the post buckling analysis of unilaterally-supported plates”. Nonlinear Anal, 5 (1981), pp. 1265–1284.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Marino. “Evolution equations and multiplicity of critical points with respect to an obstacle”. Contribution to It’Iodern Calculus of Variations, Cesari ed. Res. Notes in Math.,Pitmann (to appear).Google Scholar
  16. [16]
    A. Marino, D. Scolozzi. “Autovalori dell’operatore di Laplace ed equazioni di evoluzione in presenza di ostacolo”. Problemi differenziali e teoria dei punti critici, ( Bari, 1984 ), pp. 137.Google Scholar
  17. [17]
    A. Marino, D. Scolozzi. To appear.Google Scholar
  18. [18]
    A. Marino, C. Saccon, M. Tosques. “Curves of maximal slope and parabolic variational inequalities on non convex constraints”. To appear in Ann. Scuola Normale Superiore, Pisa.Google Scholar
  19. [19]
    E. Miesermann. “Eigenwertanfgaben für Variationsungleichungen. Math. Nachr. 100 (1980), pp. 221–228.Google Scholar
  20. [20]
    E. Miesermann. “Eigenvalue problems for variational inequalities”. Contemporary Mathematics, Vol. 4 (1981), pp. 25–43.CrossRefGoogle Scholar
  21. [21]
    R.T. Rockafellar. “Generalized directional derivatives and subgradients of nonconvex functions”. Can. J. Math., 32 (1980), pp. 257–280.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    M. Edelstein. “On nearest points of sets in uniformly convex Banach spaces”. J. Land. Math. Soc., 43 (1968), pp. 375–377.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • A. Marino
    • 1
  • C. Saccon
    • 1
  1. 1.Dept. of MathematicsUniv. of PisaPisaItaly

Personalised recommendations