Perturbed Differential Inclusion Problems

  • P. D. Loewen
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)


A particularly attractive model problem in dynamic optimization is the differential inclusion problem shown below:


Optimal Control Problem Normal Cone Generalize Gradient Differential Inclusion Weak Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.H. Clarke. “Optimization and Nonsmooth Analysis”. New York: Wiley Inter-science, (1983).MATHGoogle Scholar
  2. [2]
    F.H. Clarke. “Perturbed optimal control problems”. IEEE Trans. Auto. Control., AC-31, (1986), 535–542.Google Scholar
  3. [3]
    F.H. Clarke. “Optimal control and the true Hamiltonian”. SIAM Review, 21, (1979), 157–166.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    F.H. Clarke and P.D. Loewen. “The value function in optimal control: sensitivity, controllability, and time-optimality”. SIAM J. Control Optim., 24, (1986), 243–263.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    F.H. Clarke and P.D. Loewen. “State constraints in optimal control: a case study in proximal normal analysis”. SIAM J. Control Optim., 25, (1987), 1440–1456.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    F.H. Clarke and R.B. Vinter. “Optimal multiprocesses”. SIAM J. Control Op-tim.,to appear.Google Scholar
  7. [7]
    F.H. Clarke, P.D. Loewen, and R.B. Vinter. “Differential inclusions with free time”. Analyse Nonlineaire,to appear.Google Scholar
  8. [8]
    J. Gauvin. “The generalized gradient of a marginal function in mathematical programming”. Math. of Oper. Res., 4, (1979), 458–463.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    P.D. Loewen. “The proximal normal formula in Hilbert space”. Nonlinear Analysis, T ÄI.4 11, (1987), 979–995.MathSciNetMATHGoogle Scholar
  10. [10]
    P.D. Loewen. “Parameter sensitivity in stochastic optimal control”. Stochastics, 22, (1987), 1–40.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    P.D. Loewen. “The adjoint arc in nonsmooth optimization”. I.A.M.,Tech. Rep. 88–8, Univ. of British Columbia, Vancouver, Canada.Google Scholar
  12. [12]
    R.T. Rockafellar. “Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization”. Math. of Oper. Res., 6, (1982), 427–437.MathSciNetGoogle Scholar
  13. [13]
    R.T. Rockafellar.“Extensions of subgradient calculus with applications to optimization”. Nonlinear Analysis, TMA 9, (1985), 665–698.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • P. D. Loewen
    • 1
  1. 1.Dept. of MathematicsThe Univ. of British ColumbiaVancouverCanada

Personalised recommendations