Advertisement

From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality

  • J.-B. Hiriart-Urruty
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)

Abstract

Nonconvex minimization problems form an old subject which has received a growing interest in the recent years. The main incentive comes from modelling in Applied Mathematics and Operations Research, where one may be faced with optimization problems like: minimizing (globally) a difference of convex functions, maximizing a convex function over a convex set, minimizing an indefinite quadratic form over a polyhedral convex set, etc.

Keywords

Convex Function Convex Optimization Global Maximum Convex Analysis Nonconvex Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Auchmuty. “Dual variational principles for eigenvalue problems”, Proceedings of Symposia in Pure Mathematics, Vol. 45, Part 1 (1986), pp. 55–71.Google Scholar
  2. [2]
    Chew Soo Hong, Zhen Quan. “Integral global optimization”. Lecture Notes in Economics and Mathematical Systems 298 (1988).Google Scholar
  3. [3]
    F.H. Clarke. “Optimization and Nonsmooth Analysis”. J. Wiley and Sons (1983).Google Scholar
  4. [4]
    R. Correa, J.-B. Hiriart-Urruty. “A first order sufficient condition for optimality in nonsmooth optimization”. To appear in Mathematische Nachrichten Google Scholar
  5. [5]
    R. Durier. “On locally polyhedral convex functions”. In “Trends in Mathematical Optimization”, International Series of Numerical Mathematics, Birkhäuser Verlag (1988), pp. 55–66.CrossRefGoogle Scholar
  6. [6]
    C. Franchetti, I. Singer. “Deviation and farthest points in normed linear spaces”. Revue Roumaine de Mathématiques Pures et Appliquées, Tome XXIV, No. 3 (1979), pp. 373–381.MathSciNetGoogle Scholar
  7. [7]
    J.-B. Hiriart-Urruty. “Lipschitz r-continuity of the approximate subdifferential of a convex function”, Mathematica Scandinavica 47 (1980), pp. 123–134.MathSciNetMATHGoogle Scholar
  8. [8]
    J.-B. Hiriart-Urruty. “e-subdifferential calculus”. In “Convex Analysis and Optimization”,Research Notes in Mathematics, Series 57, Pitman (1982), pp. 43–92.Google Scholar
  9. [9]
    J.-B. Hiriart-Urruty. “Limiting behaviour of the approximate first order and second order directional derivatives for a convex function”. Nonlinear Analysis: Theory, Methods and Applications, Vol. 6, No. 12 (1982), pp. 1309–1326.MathSciNetMATHGoogle Scholar
  10. [10]
    J.-B. Hiriart-Urruty. “Generalized differentiability, duality and optimization for problems dealing with differences of convex functions”. In “ Convexity and Duality in Optimization”, Lecture Notes in Economics and Mathematical Systems 256 (1986), pp. 37–70.MathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Hörst. “On the global minimization of concave functions: introduction and survey”. Operations Research Spektrum 6 (1984), pp. 195–205.CrossRefGoogle Scholar
  12. [12]
    C. Lemaréchal. “Extensions diverses des méthodes de gradient et applications”. Thèse de Doctorat en Sciences Mathématiques, Université de Paris I X (1980).Google Scholar
  13. [13]
    C. Lemaréchal, J. Zowe. “Some remarks on the construction of higher order algorithms in convex optimization”, Applied Mathematics and Optimization 10 (1983), pp. 51–68.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    C. Michelot. “Caractérisation des minima locaux des fonctions de la classe d.c.”. Technical note, University of Dijon (1987).Google Scholar
  15. [15]
    J.-J. Moreau. “Fonctionnelles convexes”. Séminaire sur les équations aux dérivées partielles II, Collège de France (1966–1967).Google Scholar
  16. [16]
    P.M. Pardalos, J.B. Rosen. “Constrained global optimization: algorithms and applications”. Lecture Notes in Economics and Mathematical Systems 268 (1987).Google Scholar
  17. [17]
    R.T. Rockafellar. “Convex analysis”. Princeton University Press (1970).Google Scholar
  18. [18]
    I. Singer. “Maximization of lower semi-continuous convex functionals on bound- ed subsets of locally convex spaces I: hyperplane theorems”. Applied Mathemat- ics and Optimization 5 (1979), pp. 349–362.MATHGoogle Scholar
  19. [19]
    A.S. Strekalovskii. “On the global extremum problem”. Soviet Math. Doklady 35 (1987), pp. 194–198.ADSMATHGoogle Scholar
  20. [20]
    J. Toland. “A duality principle for nonconvex optimization and the calculus of variations”. Arch. Rational Mech. Anal. 71 (1979), pp. 41–61.MathSciNetADSCrossRefMATHGoogle Scholar
  21. [21]
    Fermat Days 85: Mathematics for Optimization“, edited by J.-B. HiriartUrruty, North-Holland Mathematics Studies 129 (1986).Google Scholar
  22. [22]
    Essays on Nonconvex Optimization“, edited by J.-B. Hiriart-Urruty and H. Tuy, special issue of Mathematical Programming,Vol. 41, No. 2 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J.-B. Hiriart-Urruty
    • 1
  1. 1.U.F.R. Mathématiques, Inform., GestionUniv. Paul SabatierToulouseFrance

Personalised recommendations