A Surface Plasmon Resonance Biosensor for Real-Time Immunologic Detection of Escherichia coli O157:H7

  • Pina M. Fratamico
  • Terence P. Strobaugh
  • Marjorie B. Medina
  • Andrew G. Gehring


Testing of foods for the presence of pathogenic organisms requires methods different than those employed in the clinical laboratory. In foods there could be very low levels of pathogenic bacteria and the organisms are often in a poor physiological state because of exposure to stressful conditions in the food environment or to stresses encountered during food processing and storage. The organism must be identified in the presence of a large population of competing flora. Therefore, a period of enrichment culturing of the sample in liquid growth medium is usually required in order to allow the organism to recover from injury and to allow for selective growth of low numbers of the target bacteria to detectable levels. Traditional methods for detection and identification of pathogenic bacteria in foods and other samples have relied on the use of specific microbiological media to isolate and enumerate viable bacterial cells followed by a series of biochemical and serological tests for confirmation.


Surface Plasmon Resonance Sensor Surface Sensor Chip Electronic Nose Resonance Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Kress-Rogers. 1997. Biosensors and electronic noses for practical applications. in: “Handbook of Biosensors and Electronic Noses–Medicine, Food, and the Environment,” E. Kress-Rogers, ed., CRC Press, New York, pp. 3–39.Google Scholar
  2. 2.
    L.G. Fägerstam, t1. Frostell-Karlsson, R. Karlsson, B. Persson, and I. Rönnberg. 1992. Biospecific interaction analysis using surface plasmon resonance applied to kinetic, binding site and concentration analysis, J. Chromat. 597: 397–410.CrossRefGoogle Scholar
  3. 3.
    R. Karlsson, H. Roos, F. Fägerstam, and B. Persson. 1994. Kinetic and concentration analysis using BIA technology. Methods: A Companion to Methods in Enzymology. 6: 99–110.CrossRefGoogle Scholar
  4. 4.
    M.B. Medina. 1997. Hygromycin B antibody production and characterization by a surface plasmon resonance biosensor, J. Agric. Food Chem. 45: 389–394.CrossRefGoogle Scholar
  5. 5.
    C. Mellgren, A. Stemesjö, P. Hammer, G. Suhren, L. Björck, and W. Heeschen. 1996. Comparison of biosensor, microbiological, immunochemical, and physical methods for detection of sulfamethazine residues in raw milk, J. Food Prot. 59: 1223–1226.Google Scholar
  6. 6.
    A. J. McNally, S. Mattsson, and F. Jordan. 1995. A library of monoclonal antibodies to Escherichia coli K12 pyruvate dehydrogenase complex, J. Biol. Chem. 270: 19744–19751.CrossRefGoogle Scholar
  7. 7.
    M. Minunni and M. Mascini. 1993. Detection of pesticide in drinking water using real-time biospecific interaction analysis BIA, Anal. Lett. 26: 1441–1460.CrossRefGoogle Scholar
  8. 8.
    T. Natsume, T. Koide, S. Yokota, K. Hirayoshi, and K. Nagata. 1994. Interactions between collagen-binding stress protein HSP47 and collagen, J. Biol. Chem. 269: 31224–31228.Google Scholar
  9. 9.
    P. Nilsson, B. Persson, M. Uhlén, and P. Nygren. 1995. Real-time monitoring of DNA manipulations using biosensor technology, Anal. Biochem. 224: 400–408.CrossRefGoogle Scholar
  10. 10.
    M. Pfaff, W. Göhring, J.C. Brown, and R. Timpl. 1994. Binding of purified collagen receptors (aí(31, a2ß1) and RGD-dependent integrins to laminins and laminin fragments, Eur. J. Biochem. 225: 975–984.CrossRefGoogle Scholar
  11. 11.
    M.B. Medina and M.S. Palumbo. 1996. Optimum binding of anti-hygromycin B immunoglobulins with immobilized proteins A and G using a surface plasmon resonance biosensor. Abstract No. 80C - 5. Institute of Food Technologists Annual Meeting, New Orleans, LA.Google Scholar
  12. 12.
    M. B. Medina, L. Van Houten, P.H. Cooke, and S.I. Tu. 1997. Real-time analysis of antibody binding interactions with immobilized E. coli O157:H7 cells using the BlAcore, Biotechnology Techniques. 11: 173–176.CrossRefGoogle Scholar
  13. 13.
    BlAtechnology Note 103. 1994. Working with cells and crude sample preparations in BlAcore and BlAlite. Biacore, Inc.Google Scholar
  14. 14.
    D.J. O’Shannessy, M. Brigham-Burke, and K. Peck. 1992. Immobilization chemistries suitable for use in the BlAcore surface plasmon resonance biosensor, Anal. Biochem. 205: 132–136.CrossRefGoogle Scholar
  15. 15.
    D.J. Newman, Y. Olabiran, and C. P. Price. 1997. Bioaffinity agents for sensing systems, in: “Handbook of Biosensors and Electronic Noses–Medicine, Food, and the Environment,” E. Kress-Rogers, ed., CRC Press, New York, pp. 59–89.Google Scholar
  16. 16.
    U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Lofas, B. Persson, H. Roos, 1. Rönnberg, S. Sjölander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, and M. Malmqvist. 1991. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology, Biotechniques. 11: 620–627.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Pina M. Fratamico
    • 1
  • Terence P. Strobaugh
    • 1
  • Marjorie B. Medina
    • 1
  • Andrew G. Gehring
    • 1
  1. 1.U.S. Department of Agriculture Eastern Regional Research CenterAgricultural Research ServiceWyndmoorUSA

Personalised recommendations