Dimensional Analysis of the Electrorheological Behavior of Milk Chocolate

  • Christopher R. Daubert
  • James F. Steffe
Chapter

Abstract

Electrorheology (ER) is concerned with the effects of electric fields on the flow properties of liquid suspensions that show an increase in apparent viscosity and a greater yield stress during exposure to electric fields. These fluids require polarizable particles suspended in an insulating (non-conducting) oil. The ER phenomenon results from the formation of microstructures of the dispersed solid phase. In other words, the field-induced microstructures attempt to span the fluid gap, causing reduced fluidity.

Keywords

Sugar Starch Corn Torque Sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.E. Stangroom. 1989. The Bingham plastic model of ER fluids and its implications, in: “Proceedings of the Second International Conference on ER Fluids,” J.D. Carlson, A.F. Sprecher, H. Conrad, eds., Technomic Publishing, Lancaster, PA, pp. 199–206.Google Scholar
  2. 2.
    R. Pool. 1990. The fluids with a case of split personality, Science 247: 1180.CrossRefGoogle Scholar
  3. 3.
    R.T. Bonnecaze, J.F. Brady. 1992. Yield stresses in electrorheological fluids, J. Rheol. 36: 73.CrossRefGoogle Scholar
  4. 4.
    H. Block, J.P. Kelly. 1988. Electro-rheology, J. Phys. D: Appl. Phys. 21: 1661.Google Scholar
  5. 5.
    C.F. Zukoski. 1993. Material properties and the electrorheological response, Annu. Rev. Mater. Sci. 23: 45.Google Scholar
  6. 6.
    Y.F. Deinega, G.V. Vinogradov. 1984. Electric fields in the rheology of disperse systems, Rheol. Acta 23: 636.Google Scholar
  7. 7.
    T.C. Jordan, M.T. Shaw. 1989. Electrorheology, IEEE Trans. Elec. Insul. 24: 849.Google Scholar
  8. 8.
    D.L. Klass, T.W. Martinek. 1967. Electroviscous fluids II. electrical properties, J. Appl. Phys. 38: 75.Google Scholar
  9. 9.
    H. Uejima, 1972. Dielectric mechanism and rheological properties of electro-fluids, Jap. J. Appl. Phys. 11: 319.Google Scholar
  10. 10.
    D.L. Klass, T.W. Martinek. 1967. Electroviscous fluids I. rheological properties, J. Appl. Phys. 38: 67.Google Scholar
  11. 11.
    H. Block, J.P. Kelly, A. Qin, T. Watson. 1990. Materials and mechanisms in electrorheology, Langmuir 6: 6.CrossRefGoogle Scholar
  12. 12.
    W. Wong, M.T. Shaw. 1989. The role of water in electrorheological fluids, in: “Proceedings of the Second International Conference on ER Fluids,” J.D. Carlson, A.F. Sprecher, H. Conrad, eds., Technomic Publishing, Lancaster, PA, pp. 191–198.Google Scholar
  13. 13.
    T.C. Halsey. 1992. Electrorheological fluids, Science 258: 761.CrossRefGoogle Scholar
  14. 14.
    A.P. Gast, C.F. Zukoski. 1989. Electrorheological fluids as colloidal suspensions, Adv. Colloid Interface Sci. 30: 153.Google Scholar
  15. 15.
    M.T. Shaw. 1993. Structure-property relationships in ER fluids, in: “The Fluids Engineering Conference,” D.A. Siginer, J.H. Kim, and R.A. Bajura, eds., ASME FED-Vol. 164, pp. 43–48.Google Scholar
  16. 16.
    V.I. Kordonsky, E.V. Korobko, T.G. Lazareva. 1991. Electrorheological polymer-based suspensions, J. Rheol. 35: 1427.CrossRefGoogle Scholar
  17. 17.
    T.A. Vorobeva, I.N. Vlodavets, P.I. Zubov. 1969. The size distribution of oriented aggregates formed in suspensions with the application of an alternating electric field, Kolloid. Zh. 31: 668.Google Scholar
  18. 18.
    T.B. Jones. 1989. Orientation of particle chains in AC electric fields, in: “Proceedings of the Second International Conference on ER Fluids,” J.D. Carlson, A.F. Sprecher, H. Conrad, eds., Technomic Publishing, Lancaster, PA, pp. 14–26.Google Scholar
  19. 19.
    I. Yang, A.D. Shine. 1992. Electrorheology of a nematic poly(n-hexyl isocyanate) solution, J. Rheol. 36: 1079.CrossRefGoogle Scholar
  20. 20.
    V.I. Bezruk, A.N. Lazarev, V.A. Malov, and O.G. Usyarov. 1972. Frequency effect of an external electric field on the interaction between dispersed particles in suspensions, K. Zhurnal 34: 321.Google Scholar
  21. 21.
    J.C. Hill, T.H. Van Steenkiste. 1991. Response times of electrorheolgical fluids, J. Appl. Phys. 70: 1207.Google Scholar
  22. 22.
    G.B. Thurston, E.B. Gaertner. 1991. Viscoelasticity of electrorheological fluids during oscillatory flow in a rectangular channel, J. Rheol. 35: 1327.CrossRefGoogle Scholar
  23. 23.
    H.T. See, M. Doi. 1992. Shear resistance of electrorheological fluids under time-varying electric fields, J. Rheol. 36: 1143.CrossRefGoogle Scholar
  24. 24.
    R.C. Kanu, M.T. Shaw. 1992. Electrorheological fluids based on PBZT particles with controlled geometry, in: “Proceedings of the Xlth International Congress on Rheology,” pp. 766–768.Google Scholar
  25. 25.
    D.J. Klingenberg, C.F. Zukoski. 1990. Studies on the steady-shear behavior of electrorheological suspensions, Langmuir 6: 15.CrossRefGoogle Scholar
  26. 26.
    H. Conrad, A.F. Sprecher, Y. Choi, Y. Chen. 1991. The temperature dependence of the electrical properties and strength of electrorheological fluids, J. Rheol. 35: 1393.CrossRefGoogle Scholar
  27. 27.
    R. Tao, J.T. Woestman, N.K. Jaggi. 1989. Electric field induced solidification, Appl. Phys. Lett. 55: 1844.Google Scholar
  28. 28.
    Jaggi, N.K., J.T. Woestman, R. Tao. 1989. Possible phase transition in electrorheological fluids, in: “Proceedings of the Second International Conference on ER Fluids,” J.D. Carlson, A.F. Sprecher, H. Conrad, eds., Technomic Publishing, Lancaster, PA, pp. 53–62.Google Scholar
  29. 29.
    Z. Lou, R.D. Ervin, F.E. Filisko. 1993. The influence of viscometer dynamics on the characterization of an electrorheological fluid under sinusoidal electric excitation, J. Rheol. 37: 55.CrossRefGoogle Scholar
  30. 30.
    Y. Otsubo, M. Sekine, and S. Katayama. 1992. Electrorheological properties of silica suspensions, J. Rheol. 36: 479.CrossRefGoogle Scholar
  31. 31.
    W.B. Russel, D.A. Saville,W. R. Schowalter. 1989. “Colloidal Dispersions,” Cambridge University Press, London.Google Scholar
  32. 32.
    L. Marshall, C.F. Zukoski IV, J.W. Goodwin. 1989. Effects of electric fields on the rheology of non-aqueous concentrated suspensions, J. Chem. Soc. Faraday Trans. 1. 85: 2785.Google Scholar
  33. 33.
    D.J. Klingenberg, D. Dierking, C.F. Zukoski. 1991. Stress-transfer mechanisms in electrorheological suspensions, J. Chem. Soc. Faraday Trans. 87: 425.Google Scholar
  34. 34.
    P.M. Adriani, A.P. Gast. 1988. A microscopic model of electrorheology, Phys. Fluids 31: 2757.Google Scholar
  35. 35.
    C.R. Daubert, J.F. Steffe. 1996. Electrorheological behavior of milk chocolate, J. Texture Stud. 27: 93.CrossRefGoogle Scholar
  36. 36.
    J. Chevalley. 1974. Rheology of chocolate, J. Texture Stud. 22: 177.Google Scholar
  37. 37.
    H. L. Langhar 1951 “Dimensional Analysis,” John Wiley and Sons, Inc., New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Christopher R. Daubert
    • 1
  • James F. Steffe
    • 2
  1. 1.Department of Food ScienceNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Agricultural EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations