A New Mass Spectrometric Method for the Regiospecific Analysis of Triacylglycerols in Edible Oils and Fats

  • Hazel R. Mottram
  • Richard P. Evershed


Edible fats and oils are mainly composed of complex mixtures of triacylglycerols (TAG). The position of fatty acid substitution on the glycerol backbone of a triacylglycerol (TAG) molecule is of considerable importance from a physiological1 and nutritional’ point of view. Consequently, in order to fully characterize a TAG molecule, it is necessary to know the constituent fatty acids and their position within the molecule. However, the ability to unambiguously identify positional isomers of individual TAGs, especially when they are components of complex natural mixtures, is a long standing problem in lipid chemistry.


High Performance Liquid Chromatographic Positional Isomer Stereospecific Analysis Fatty Acyl Moiety High Performance Liquid Chromatographic Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.A. Pufal, P. T. Quinlan, and A. M. Salter. 1995. Effect of dietary triacylglycerol structure on lipoprotein metabolism - a comparison of the effects of dioleoyl-palmitoylglycerol in which palmitate is esterified to the 2-or 1(3)-position of the glycerol, Biochim. Biophvs. Acta 1258: 41.CrossRefGoogle Scholar
  2. 2.
    E. A. Decker. 1996. The role of stereospecific saturated fatty-acid positions on lipid nutrition, Nutr. Rev. 54: 108.CrossRefGoogle Scholar
  3. 3.
    H. Brockerhoff, and M. Yurkowski. 1966. Stereospecific analyses of several vegetable fats, J. Lipid Res. 7: 62.Google Scholar
  4. 4.
    W. W. Christie, B. Nikolovadamyanova, P. Laakso, and B. Herslof. 1991. Stereospecific analysis of triacylsn-glycerols via resolution of diastereomeric diacylglycerol derivatives by high-performance liquid-chromatography on silica, J. Am. Oil Chem. Soc. 68: 695.CrossRefGoogle Scholar
  5. 5.
    R. O. Adlof. 1995. Analysis of triacylglycerol positional isomers by silver ion high performance liquid chromatography, J. High Resolut. Chronzatogr Chromatogr Commun. 18: 105.CrossRefGoogle Scholar
  6. 6.
    A. Kuksis. 1994. GLC and HPLC of neutral glycerolipids, in: “Lipid Chromatographic Analysis”, T. Shibamoto, ed., Marcel Dekker, New York, pp. 177 – 222.Google Scholar
  7. 7.
    R. Ryhage and E. Stenhagen. 1960. Mass spectrometry of lipids, J. Lipid Res. 1: 361.Google Scholar
  8. 8.
    H. Kallio and G. Currie. 1993. Analysis of low erucic-acid rapeseed oil (Brassica Campestris) by negative ion chemical ionisation tandem mass spectrometry - a method giving information on the fatty acid composition in positions sn-2 and sn-1/3 of triacylglycerols, Lipids 28: 207.CrossRefGoogle Scholar
  9. 9.
    P. Laakso and P. Voutilainen. 1996. Analysis of triacylglycerols by silver-ion high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, Lipids 31: 1311.CrossRefGoogle Scholar
  10. 10.
    T. R. Covey, E. D. Lee, A. P. Bruins, and J. D. Henion. 1986. Liquid chromatography/mass spectrometry, Anal. Chem. 58: 1451A.Google Scholar
  11. 11.
    W.C. Byrdwell and E. A. Emken. 1995. Analysis of triglycerides using atmospheric-pressure chemical ionisation mass-spectrometry, Lipids 30: 173.CrossRefGoogle Scholar
  12. 12.
    W. E. Neff and W. C. Byrdwell. 1995. Soybean oil triacylglycerol analysis by reversed-phase high-performance liquid chromatography coupled with atmospheric pressure chemical ionisation mass spectrometry, J. Am. Oil Chem. Soc. 72: 1185.CrossRefGoogle Scholar
  13. 13.
    W. E. Neff and W. C. Byrdwell. 1995. Triacylglycerol analysis by high performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry: Crepis alpina and Vernonia galamensis seed oils, J. Liquid Chrom. 18: 4165.CrossRefGoogle Scholar
  14. 14.
    H. R. Mottram and R. P. Evershed. 1996. Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionisation mass spectrometry, Tetrahedron Lett., 37: 8593.CrossRefGoogle Scholar
  15. 15.
    H. R. Mottram, S. E. Woodbury, and R. P. Evershed. 1997. Identification of Triacylglycerol Positional Isomers Present in Vegetable Oils by High Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionisation Mass Spectrometry, Rapid Commun. Mass Spectrom. 11: 1240.CrossRefGoogle Scholar
  16. 16.
    S. Hamilton, R. J. Hamilton, and R. A. Sewell. 1992. Extraction of lipids and derivative formation, in: “Lipid Analysis - a practical approach”, R. J. Hamilton and S. Hamilton, eds., IRL Press, Oxford, pp. 13 – 64.Google Scholar
  17. 17.
    K. Geeraert and D. DeSchepper. 1983. Structure elucidation of triglycerides by chromatographic techniques, J. High Resolut. Chromatogr. Chromatogr. Commun. 6:123.Google Scholar
  18. 18.
    L. Marai, J.J. Myher, and A. Kuksis. 1983. Analysis of triacylglycerols by reversed phase-high performance liquid chromatography with direct liquid inlet mass spectrometry, Can. J. Biochem. Cell Biol. 61: 840.CrossRefGoogle Scholar
  19. 19.
    W. C. Byrdwell, E. A. Emken, W. E. Neff, and R. O. Adlof. 1996. Quantitative analysis of triglycerides using atmospheric pressure chemical ionization-mass spectrometry, Lipids 31: 919.CrossRefGoogle Scholar
  20. 20.
    G. F. Spencer, S. F. Herb, and P. J. Gorminsky. 1976. Fatty acid composition as a basis for identification of commercial fats and oils, J. Am. Oil Chem. Soc. 53: 94.CrossRefGoogle Scholar
  21. 21.
    H. Brockerhoff, R. J. Hoyle, and N. Wolmark. 1966. Positional distribution of fatty acids in triglcyerides of animal depot fats, Biochim. Biophys. Acta 116: 67.CrossRefGoogle Scholar
  22. 22.
    W. W. Christie and J. H. Moore. 1970. A comparison of the structures of triglycerides from various pig tissues, Biochim. Biophys. Acta 210: 46.CrossRefGoogle Scholar
  23. 23.
    M. Enser. 1991. Animal carcass fats and fish oils, in: “Analysis of Oilseeds, Fats and Fatty Foods”, J. B. Rossell and J. L. R. Pritchard, eds., Elsevier Applied Science, London, pp. 329 – 394.Google Scholar
  24. 24.
    W. W. Christie and J. H. Moore. 1971. Structures of triglycerides isolated from various sheep tissues, J. Sci. Fd. Agric. 22: 120.CrossRefGoogle Scholar
  25. 25.
    R. C. Noble, W. W. Christie, and J. H. Moore. 1971. Diet and the lipid composition of adipose tissue in the young lamb, J. Sci. Fd. Agric. 22: 616.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hazel R. Mottram
    • 1
  • Richard P. Evershed
    • 1
  1. 1.School of ChemistryUniversity of BristolBristolUK

Personalised recommendations