Shedding New Light on Old Problems
  • Mansel W. Griffiths


Light travels at 186,281 miles/sec and is one component of the various electromagnetic waves transmitted through space. This electromagnetic radiation ranges in frequency from a meter or more (radio waves), down to x-rays with wavelengths of less than a billionth of a meter. Visible light (wavelengths of 380–770 nm) lies between radio waves and x-rays on the spectrum. At x-ray and shorter wavelengths, electromagnetic radiation is particle-like in its behavior, whereas toward the long wavelength end of the spectrum the behavior is wavelike. Because the visible portion is intermediate between the two, it exhibits both wave and particle properties. These properties allow light waves to be manipulated so that they can be filtered by wavelength or amplified. This ability to exploit light makes it invaluable as the signaling step in diagnostic assays.


Adenylate Kinase Ground Beef Food Microbiology Immunomagnetic Separation Transduce Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Meighen. 1993. Bacterial bioluminescence: organization, regulation, and application of the lux genes, FASEB Journal 7: 1016.Google Scholar
  2. 2.
    P. J. Herring. 1987. Systematic distribution of bioluminescence in living organisms, J. Biolumin. Chemilumin. 1: 147.CrossRefGoogle Scholar
  3. 3.
    International Commission on Microbiological Specifications for Foods. 1988. Microorganisms in Foods 4. Application of the Hazard Analysis Critical Control Point (HACCP) System to Ensure the Microbiological Safety and Quality of Foods. Oxford, U.K.: Blackwell Scientific Publications Ltd.Google Scholar
  4. 4.
    M. W. Griffiths. 1997. Potential for rapid microbiological testing with HACCP, AOAC Journal In press.Google Scholar
  5. 5.
    M. W. Griffiths. 1996. The role of ATP bioluminescence in the food industry: New light on old problems, Food Technol. 50 (6): 62.Google Scholar
  6. 6.
    A. L. Kyriakades, and P. D. Patel. 1994. Luminescence techniques for microbiological analysis of foods, in “Rapid Analysis Techniques in Food Microbiology,” P. Patel, ed., Blackie Academic and Professional, Glasgow, pp. 196–231.Google Scholar
  7. 7.
    J.-M. Hawronskyj, and J. Holah. 1997. ATP: A universal hygiene monitor, Trends Food Sci. Technol. 8: 79.CrossRefGoogle Scholar
  8. 8.
    E. W. Chappelle, and G. V. Levin. 1968. Use of the firefly bioluminescence reaction for the rapid detection and counting of bacteria, Biochem. Med. 2: 41.CrossRefGoogle Scholar
  9. 9.
    M. DeLuca, and W. D. McElroy. 1978. Purification and properties of firefly luciferase, Meth. Enzymol. 57: 3.CrossRefGoogle Scholar
  10. 10.
    A. N. Sharpe, M. N. Woodrow, and A. K. Jackson. 1970. Adenosine triphosphate (atp) levels in foods contaminated by bacteria, J. Appl. Bacteriol. 33: 758.CrossRefGoogle Scholar
  11. 11.
    A. N. Sharpe. 1994. Development and evaluation of membrane filtration techniques in microbial analysis, in “Rapid Analysis Techniques in Food Microbiology,” P. Patel, ed., Blackie Academic and Professional, Glasgow, U.K., pp. 29–660Google Scholar
  12. 12.
    M. W. Griffiths. 1995. Bioluminescence and the food industry, J. Rapid Methods Automation Microbiol. 4: 65.CrossRefGoogle Scholar
  13. 13.
    M. W. Griffiths. 1993. Applications of bioluminescence in the dairy industry, J. Dairy Sci. 76: 31–18.CrossRefGoogle Scholar
  14. 14.
    D. A. Bautista, S. Barbut, J.-P. Vaillancourt, L. J. Harris, and M. W. Griffiths. 1996. Statistical evaluation of a poultry process for the determination of overall quality using conventional microbiology and ATP bioluminescence, in Abstracts of the 83rd Annual Meeting of the International Association of Milk, Food and Environmental Sanitarians, Seattle, WA, 30 June -3 July, IAMFES, P. 34.Google Scholar
  15. 15.
    M. Velazquez, and J. M. Fiertag. 1997. Quenching and enhancement effects of ATP extractants, cleansers, and sanitizers on the detection of the ATP bioluminescence signal, J. Food Prot. 60: 799.Google Scholar
  16. 16.
    W. Reybroek, and E. Schram. 1995. Improved filtration method to assess bacteriological quality of raw milk based on bioluminescence of adenosine triphosphate, Neth. Milk Dairy J. 49: 1.Google Scholar
  17. 17.
    J. Rigarlsford. 1992. The pros and cons of using ATP to monitor hygiene, J. Biolumin. Chemilumin. 7: 258.Google Scholar
  18. 18.
    E. Schram. 1991. Evolution of bioluminescent ATP assays, in “Bioluminescence and Chemiluminescence: Current Status,” P. E. Stanley and L. J. Kricka, eds., John Wiley and Sons. Chichester, U.K., pp. 407–412.Google Scholar
  19. 19.
    S. E. Brolin, E. Borglund, and A. Agren. 1979. Photokinetic microassay of adenylate kinase using the firefly luciferase reaction, J. Biochem. Biophys. Meths. 1: 163.CrossRefGoogle Scholar
  20. 20.
    M. J. Murphy, D. J. Squirrell, M. F. Sanders, and R. Blasco. 1997. The use of adenylate kinase for the detection and identification of low numbers of microorganisms, in “Bioluminescence and Chemiluminescence; Molecular Reporting With Photons,” J. W. Hastings, L. J. Kricka, and P. E. Stanley, eds., John Wiley and Sons, Chichester, U.K., pp. 319–322.Google Scholar
  21. 21.
    D. J. Squirrel, and M. J. Murphy. 1995. Adenylate kinase as a cell marker in bioluminescent assays, in “Bioluminescence and Chemiluminescence; Fundamentals and Applied Aspects,” A. K. Campbell, L. J. Kricka, and P. E. Stanley, eds., John Wiley and Sons, Chichester, U.K., pp. 486–489.Google Scholar
  22. 22.
    J.-M. Hawronskyj, R. S. Chittock, C. W. Wharton, and J. T. Holah. 1995. Low level bacterial contamination measured using a novel bioluminescent assay, in “Bioluminescence and Chemiluminescence; Fundamentals and Applied Aspects,” A. K. Campbell, L. J. Kricka, and P. E. Stanley, eds., John Wiley and Sons, Chichester, U.K., pp. 411–414.Google Scholar
  23. 23.
    M. F. Sanders. 1995. A rapid bioluminescent technique for the detection and identification of Listeria monocytogenes in the presence of Listeria innocua, in “Bioluminescence and Chemiluminescence; Fundamentals and Applied Aspects,” A. K. Campbell, L. J. Kricka, and P. E. Stanley, eds., John Wiley and Sons, Chichester, U.K., pp. 454–457.Google Scholar
  24. 24.
    L. McIntyre, S. A. A. Jassim, and M. W. Griffiths. 1996. Development of a bacteriophage-mediated ATP-bioluminescent detection system for Listeria monocytogenes, in Abstracts of the 83rd Annual Meeting of the International Association of Milk, Food and Environmental Sanitarians, Seattle, WA, 30 June -3 July, IAMFES, P. 70.Google Scholar
  25. 25.
    E. A. Meighen. 1988. Enzymes and genes from the lux operons of bioluminescent bacteria, Ann. Rev. Microbiol. 42: 151.CrossRefGoogle Scholar
  26. 26.
    E. A. Meighen. 1991. Molecular biology of bacterial bioluminescence, Microbiol. Rev. 55 (1): 123.Google Scholar
  27. 27.
    E. A. Meighen. 1991. Molecular biology of bioluminescence, in “Bioluminescence and Chemiluminescence: Current Status,” R. E. Stanley and L. J. Kricka, eds„ John Wiley and Sons Ltd., Chichester, U.K., pp. 3–10.Google Scholar
  28. 28.
    E. A. Meighen, and P. V. Dunlap. 1993. Physiological, biochemical and genetic control of bacterial bioluminescence, Adv. Microbial Physiol. 34: 1.CrossRefGoogle Scholar
  29. 29.
    J. Baker, M. W. Griffiths, and D. Collins-Thompson. 1992. Bacterial bioluminesence: application in food microbiology, J. Food Prot. 55: 62.Google Scholar
  30. 30.
    C. E. R. Dodd, G. S. A. B. Stewart, and W. M. Waites. 1990. Biotechnology-based methods for the detection, enumeration and epidemiology of food poisoning and spoilage organisms, Biotechnol. Genet. Eng. Rev. 8: 1.CrossRefGoogle Scholar
  31. 31.
    R. J. Hill, C. E. D. Rees, M. K. Winson, and G. S. A. B. Stewart. 1993. The application of lux genes, Biotechnol. Appl. Biochem. 17: 3.Google Scholar
  32. 32.
    S. A. A. Jassim, A. Ellison, S. P. Denyer, and G. S. A. B. Stewart. 1990. In vivo bioluminescence-a cellular reporter for research and industry, J. Biolumin. Chemilwnin. 5: 115.CrossRefGoogle Scholar
  33. 33.
    G. S. A. B. Stewart. 1990. In vivo bioluminescence: New potentials for microbiology, Lett. Appl. Microbiol. 10: 1.CrossRefGoogle Scholar
  34. 34.
    G. Stewart, T. Smith, and S. Denyer. 1989. Genetic engineering for bioluminescent bacteria, Food Sci. Technol. Today 3 (1): 19.Google Scholar
  35. 35.
    G. S. A. B. Stewart, and P. Williams. 1992. Lux genes and the applications of bacterial bioluminescence, J. Gen. Microbiol. 138: 1289.CrossRefGoogle Scholar
  36. 36.
    G. S. A. B. Stewart, S. P. Denyer, and J. Lewington. 1991. Microbiology illuminated: gene engineering and bioluminescence, Trends Food Sci. Technol. 2: 7.CrossRefGoogle Scholar
  37. 37.
    S. Ulitzur, and J. Kuhn. 1987. Introduction of /ux genes into bacteria: a new approach for specific determination of bacteria and their antibiotic susceptibility, in “Bioluminescence and Chemiluminescence New Perspectives,” J. Schlomerich, R. Andreesen, A. Kapp, M. Ernst, and W. G. Woods, eds., John Wiley and Sons, Chichester, U.K., pp. 463–472.Google Scholar
  38. 38.
    A. B. Ronner, and D. O. Cliver. 1990. Isolation and characterization of a coliphage specific for Escherichia con O157:H7. J. Food Prot. 53: 944.Google Scholar
  39. 39.
    P. E. Turpin, K. A. Maycroft, J. Bedford, C. L. Rowlands. and E. M. H. Wellington. 1993. A rapid luminescent-phage based MPN method for the enumeration of Salmonella typhirnurimn in environmental samples, Lett. Appl. Microbiol. 16: 24.Google Scholar
  40. 40.
    J. Chen, and M. W. Griffiths. 1996. Salmonella detection in eggs using lux’ bacteriophages, J. Food Prot. 59: 908.Google Scholar
  41. 41.
    C. P. Kodicara, H. H. Crew, and G. S. A. B. Stewart. 1991. Near on-line detection of enteric bacteria using lux recombinant bacteriophage, FEMS Microbiol. Lett. 83: 261.CrossRefGoogle Scholar
  42. 42.
    M. J. Loessner, C. E. D. Rees, G. S. A. B. Stewart, and S. Scherer. 1996. Construction of luciferase reporter bacteriophage a51 I::luxab for rapid and sensitive detection of viable Listeria cells, Appl. Environ. Microbiol. 62: 1133.Google Scholar
  43. 43.
    M. J. Loessner, M. Rudolf, and S. Scherer. 1997. Evaluation of luciferase reporter bacteriophage a51 I::luxab for detection of Listeria monocvtogenes in contaminated foods, Appl. Environ. Microbiol. 63: 2961.Google Scholar
  44. 44.
    W. R. Jr. Jacobs. R. G. Barletta, R. Udani, J. Chan, G. Kalkut, G. Sosne, T. Kieser, G. J. Sarkis, G. F. Hat-full, and B. R. Bloom. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages, Science 260: 819.CrossRefGoogle Scholar
  45. 45.
    M. Barinaga. 1993. New test catches drug-resistant tb in the spotlight, Science 260: 750.CrossRefGoogle Scholar
  46. 46.
    R. Corbisier, G. Ji, G. Nuyts, M. Mergeay, and S. Silver. 1993. Lux AB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureu.s plasmid P1258 FEMS Microbiol. Lett. 110:231.Google Scholar
  47. 47.
    A. K. Campbell. 1989. Living light: Biochemistry, function and biomedical applications, Essays Biochem. 24: 41.Google Scholar
  48. 48.
    M. Chalfie, T. Yuan, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression, Science 263: 802.CrossRefGoogle Scholar
  49. 49.
    G. D. Kutuzova, R. R. Hannah, and K. V. Wood. 1997. Bioluminescence color variation and kinetic behavior relationships among beetle luciferases, in “Bioluminescence and Chemiluminescence; Molecular Reporting With Photons,” J. W. Hastings, L. J. Kricka, and R. E. Stanley, eds., John Wiley and Sons Ltd., Chichester, U.K., pp. 248–252.Google Scholar
  50. 50.
    P. K. Wolber, and R. L. Green. 1990. Detection of bacteria by transduction of ice nucleation genes, Trends Biotechnol. 8: 276.CrossRefGoogle Scholar
  51. 51.
    R. K. Wolber, and R. L. Green. 1990. New method for the rapid detection of Salmonella in foods, Food Sci. Technol. 1: 80.CrossRefGoogle Scholar
  52. 52.
    P. K. Wolber. 1993. Bacterial ice nucleation, Adv. Microbial Phvsiol. 34: 203.CrossRefGoogle Scholar
  53. 53.
    K. P. Hennes, and C. A. Suttle. 1995. Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy, Limnol. Oceanog. 40: 1054.CrossRefGoogle Scholar
  54. 54.
    K. P. Hennes, C. A. Suttle, and A. M. Chan. 1995. Fluorescently labeled virus probes in show that natural virus populations can control the structure of marine microbial communities, Appl. Environ. Microbiol. 61: 3623.Google Scholar
  55. 55.
    S. P. Denyer, S. A. A. Jassim, and G. S. A. B. Stewart. 1992. Engineering microbial bioluminescence and biosensor applications, in “Molecular Biology in Clinical Research and Diagnosis,” R. Walker, ed., Blackwell Scientific Publications, Oxford, U.K., pp. 403–423.Google Scholar
  56. 56.
    G. S. A. B. Stewart. 1993. Biosensors. Bacterial luminescence: Development and application, Lancet 341: 279.CrossRefGoogle Scholar
  57. 57.
    M. Korpela, P. Mäntsälä, E.-M. Lilius, and M. Karp. 1989. Stable-light-emitting Escherichia coli as a biosensor, J. Biolumin. Chemilumin. 4: 551.CrossRefGoogle Scholar
  58. 58.
    L. Geiselhart, M. Osgood, and D. S. Holmes. 1991. Construction and evaluation of a self-luminescent biosensor, Ann. N. Y. Acad. Sci. 646: 53.CrossRefGoogle Scholar
  59. 59.
    S. Lee, K. Sode, K. Nakamishi, J. L. Marty, E. Tamiya, and I. Karube. 1992. A novel microbial sensor using luminous bacteria, Biosens. Bioelectr: 7: 273.CrossRefGoogle Scholar
  60. 60.
    S. M. Gautier, L. J. Blum, and P. R. Coulet. 1991. Bioluminescence-based fibre-optic sensor with entrapped co-reactant: an approach for designing a self-contained biosensor, Anal. Chim. Acta 243: 149.CrossRefGoogle Scholar
  61. 61.
    O. Selifonova, R. Burlage, and T. Barkay. 1993. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment, Appl. Environ. Microbiol. 59: 3083.Google Scholar
  62. 62.
    A. Heitzer, O. F. Webb, J. E. Thonnard, and G. S. Sayler. 1992. Specific and quantitative assessment of naphthalene and salicylate by using a bioluminescent catabolic reporter bacterium, Appl. Environ. Microbiol. 58: 1839.Google Scholar
  63. 63.
    C. Holden 1992. Fireflies may light future for biosensors, Science 258: 223.Google Scholar
  64. 64.
    A. Guzzo, C. Diorio, and M. S. DuBow. 1991. Transcription of the Escherichia coli fliC gene is regulated by metal ions, Appl. Environ. Microbiol. 57: 22–55.Google Scholar
  65. 65.
    S. Belkin, T. K. Vandyk, A. C. Vollmer, D. R. Smulski, and R. A. Larossa. 1996. Monitoring subtoxic environmental hazards by stress-responsive luminous bacteria, Environ. Toxicol. Water Qual. 11: 179.CrossRefGoogle Scholar
  66. 66.
    J. S. Blissett, and G. S. A. B. Stewart. 1989. In vivo bioluminescent determination of apparent kin’s for aldehyde in recombinant bacteria expressing luxA/B, Lett. Appl. Microbiol. 9: 149.CrossRefGoogle Scholar
  67. 67.
    K. Blouin, S. G. Walker, J. Smit, and R. F. B. Turner. 1996. Characterization of in vivo reporter systems for gene expression and biosensor applications based on luxab luciferase genes, Appl. Environ. Microbial. 62: 2013.Google Scholar
  68. 68.
    K. V. Wood, and M. G. Gruber. 1996. Transduction in microbial biosensors using multiplexed bioluminescence, Biosens. Bioelectr. 11: 207.CrossRefGoogle Scholar
  69. 69.
    K. Seeger, and M. W. Griffiths. 1994. ATP bioluminescence for hygiene monitoring in health care institutions, J. Food Prot. 57: 509.Google Scholar
  70. 70.
    R. Orth, and M. Steigert. 1996. Practical experience in the ATP-bioluminescence measuring technique to control hygiene after cleaning of a meat plant, Fleischwirtschaft 76: 40.Google Scholar
  71. 71.
    C. Bell, P. A. Stallard, S. E. Brown, and J. T. E. Standley. 1994. ATP-bioluminescence techniques for assessing the hygienic condition of milk transport tankers, Int. Dairy J. 4: 629.CrossRefGoogle Scholar
  72. 72.
    D. A. Bautista, L. McIntyre, L. Laleye, and M. W. Griffiths. 1992. The application of ATP bioluminescence for the assessment of milk hygiene and factory hygiene, J. Rapid Meth. Automation Microbiol. 1: 179.CrossRefGoogle Scholar
  73. 73.
    J. A. Poulis, M. de Pijper, D. A. A. Mossel, and P. P. A. Dekkers. 1993. Assessment of cleaning and disinfection in the food industry with the rapid ATP-bioluminescence technique combined with the tissue fluid contamination test and a conventional microbiological method, Int. J. Food Microbiol. 20: 109.CrossRefGoogle Scholar
  74. 74.
    C. Bell, C. D. Bowles, M. J. K. Toszeghy, and P. Neaves. 1996. Development of a hygiene standard for raw milk based on the lumac ATP-bioluminescence method, Int. Daily J. 6: 709.CrossRefGoogle Scholar
  75. 75.
    D. A. Bautista, J.-P. Vaillancourt, R. Clarke, S. Renwick, and M. W. Griffiths. 1995. The rapid assessment of the microbiological quality of poultry carcasses, J. Food Prot. 58: 551.Google Scholar
  76. 76.
    H. D. Werlein, and R. Fricke. 1996. ATP bioluminescence for rapid determination of the microbiological quality of poultry meat, Arch. Geflugelkunde 60: 212.Google Scholar
  77. 77.
    D. A. Bautista, G. Kozub, K. W. F. Jericho, and M. W. Griffiths. 1997. Evaluation of adenosine triphosphate (ATP) bioluminescence for estimating bacteria on surfaces of beef carcasses, J. Rapid Meth. Automation Microbiol. 5: 37.CrossRefGoogle Scholar
  78. 78.
    G. R. Siragusa, C. N. Cutter, W. J. Dorsa, and M. Koohmaraie. 1995. Use of a rapid microbial ATP bioluminescence assay to detect contamination on beef and pork carcasses, J. Food Prot. 58: 770.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mansel W. Griffiths
    • 1
  1. 1.Department of Food ScienceUniversity of GuelphGuelphCanada

Personalised recommendations