Immunologic Aspects of Vessel Injury and Thrombosis

  • Carl G. Becker


Cardiovascular diseases account for over one-half of all deaths in the United States and contribute similarly to the number of deaths in other developed Western countries. More than 80% of these deaths can be attributed to complications of atherosclerosis.


Immune Complex Tissue Factor Rheumatic Fever Rheumatic Heart Disease Glyceryl Ether 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. McGill, Persistant problems in the pathogenesis of athero-sclerosis, Arteriosclerosis 4:443 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    R. G. Gerrity, The role of monocytes in atherogenesis. I. Transition of blood borne monocytes into foam cells in fatty lesions, Am J Path 103:181 (1981).PubMedGoogle Scholar
  3. 3.
    R. Ross, and A. Vogel, The platelet derived growth factor, Cell 14:203 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Shimokado, E. W. Raines, D. K. Medtes, T. B. Barrett, and R. Ross, A significant part of macrophage derived growth factor consists of at least two forms of PDGF, Cell 43:277 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    L. B. Chen, J. M. Buchanan, Mitogenic activity of blood components. I. Thrombin and prothrombin, Proc Natl Acad Sci (U.S.A.) 72:131 (1975).CrossRefGoogle Scholar
  6. 6.
    N. Capurro, and R. Levi, The heart as a target organ in systemic allergic reactions: Comparison of cardiac anaphylaxis im vivo and in vitro, Circ Res 36:520 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    T. J. Sullivan, Cardiac disorders in penicillin induced anaphylaxis, Jama 248:2161 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    L.A. Solberg, and J. P. Strong, Risk factors and atherosclerotic lesions. A review of autopsy studies, Arteriosclerosis 3:187 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    W. E. Paul, The immune system: An introduction, in: “Fundamental Immunology,” W. E. Paul, ed., Raven Press, New York (1984).Google Scholar
  10. 10.
    R. L. K. Virchow, Cellular Pathology as Based Upon Physiological Pathological Histology (1858), translated by F. Chance, Dover, New York (1971).Google Scholar
  11. 11.
    C. Rokitansky, Lehrbuch der Pathologischen Anatomie, Vol 2, ed., W. Bronmueller, Vienna (1856).Google Scholar
  12. 12.
    J. B. Duguid, Pathogenesis of atherosclerosis, Lancet ii:925 (1949).CrossRefGoogle Scholar
  13. 13.
    P. Zeek, Studies in Atherosclerosis. I. Conditions in childhood which predispose to the early development of arteriosclerosis, Am Med Sci. 184:350 (1932).CrossRefGoogle Scholar
  14. 14.
    P. Zeek, Studies in Atherosclerosis. II. Atheroma and its sequelae in rheumatic heart disease, Am J Med Sci 184:350, (1932).CrossRefGoogle Scholar
  15. 15.
    H. T. Karsner, and F. Bayless, Coronary arteries in rheumatic fever, Am Heart J 9:557 (1934).CrossRefGoogle Scholar
  16. 16.
    L. Gross, M. A. Kugel, and E. Z. Epstein, Lesions of the coronary arteries and their branches in rheumatic fever, Am J Path 11:253 (1935).PubMedGoogle Scholar
  17. 17.
    T. Fahr, Zur Frage der Polymyositis (Dermatomyositis), Arch Dermatol Syph 130:1 (1921).CrossRefGoogle Scholar
  18. 18.
    E. L. Opie, Inflammation and immunity, J Immunol 17:329 (1929).Google Scholar
  19. 19.
    A. R. Rich, Hyersensitivity in disease with especial reference to periarteritis nodosa, rheumatic fever, disseminated lupus erythematosus and rheumatoid arthritis, in: “The Harvey Lecture,” Academic Press, New York (1946).Google Scholar
  20. 20.
    A. R. Rich, and J. E. Gregory, Experimental anaphylactic lesions of the coronary arteries of the sclerotic type, commonly associated with rheumatic fever and disseminated lupus erythematosus, Bull Johns Hopkins Hosp 81:313 (1947).Google Scholar
  21. 21.
    V. G. Tsakralides, L. C Bleiden, and J. E. Edwards, Coronary atherosclerosis and myocardial infarction associated with systemic lupus erythematosus, Am Heart J 87:637, (1974).CrossRefGoogle Scholar
  22. 22.
    E. G. L. Bywaters, Peripheral vascular obstruction in rheumatoid arthritis and its relationship to other vascular lesions, Ann Rheum Pis 16:84 (1957).CrossRefGoogle Scholar
  23. 23.
    K. S. Kant, V. E. Poliak, A. Dosekun, P. Glas-Greenwalt, M. A. Weiss, and H. I. Glueck, Lupus nephritis with thrombosis and abnornal fibrinolysis, J Lab Clin Med 105:77 (1985).PubMedGoogle Scholar
  24. 24.
    F. J. Dixon, J. J. Vasquez, W. O. Weigle, and C. G. Cochrane, Pathogenesis of serum sickness, Arch Pathol 65:18 (1958).Google Scholar
  25. 25.
    W. T. Kniker, and C. G. Cochrane, The localization of circulating immune complexes in experimental serum sickness, J Exp Med 127:119 (1968).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Benveniste, P. M. Henson, and C. G. Cochrane, Leukocyte dependent histamine release from rabbit platelets, J Exp Med 136:1356 (1972).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Benveniste, Platelet activating factor, a new mediator of anaphylaxis and immune complex deposition from rabbit and human basophils, Nature 249:581 (1974).PubMedCrossRefGoogle Scholar
  28. 28.
    P. O. Clark, D. J. Hanahan, and R. N. Pinckard, Physical and chemical properties of platelet activating factor obtained from human neutrophils and monocytes and rabbit neutrophils and basophils, Biochem Biophys Acta 628:69 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    P. M. Henson, Activation of rabbit platelets by platelet activating factor derived from IgE sensitized basophils. Characteristic of the aggregation and its dissociation from secretion, J Clin Invest 60:481 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    L. B. Schwartz, and K. F. Austen, Structure and function of the chemical mediators of mast cells, Prog Allergy 34:271 (1984).PubMedGoogle Scholar
  31. 31.
    R. N. Pinckard, C. Tanegawa, and M. Halonen, IgE induced blood coagulation alterations in the rabbit, J Immunol li5:525 (1975).Google Scholar
  32. 32.
    H. L. Meier, A. P. Kaplan, L. M. Lichtenstein, S. D. Revak C. G. Cochrane, and H. H. Newball, Anaphylactic release of a prekallikrein activator from human lung in vitro, J Clin Invest 72:574 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    L. B. Schwartz, J. J. Schratz, D. Vik, D. T. Fearon, and K. F. Austen, Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase, J Immunol 130:1891 (1983).PubMedGoogle Scholar
  34. 34.
    C.R. Minick, G. E. Murphy, and W. G. Campbell, Experimental induction of atheroarteriosclerosis by the synergy of allergic injury to arteries and lipid rich diet. I. Effect of repeated injections of horse serum in rabbits fed a dietary cholesterol supplement, J Exp Med 124:635 (1966).PubMedCrossRefGoogle Scholar
  35. 35.
    N. J. Hardin, C. R. Minick, and G. E. Murphy, Experimental induction of atheroarteriosclerosis by the synergy of allergic injury to arteries and lipid rich diet. III. The role of earlier acquired fibromuscular intimai thickening in the pathogenesis of later developing atherosclerosis, Am J Path 73:301 (1973).PubMedGoogle Scholar
  36. 36.
    A. K. Rider, J. C. Copeland, S. A. Hunt, J. Mason, M. J. Spector R. A. Winkle, C. P. Bieber, M. E. Billingham, E. Doug, R. B. Griepp, J. S. Schroeder, E. B. Stinson, D. C Harrison, and N. E. Shumway, The status of cardiac transplantation, Circulation 52:531 (1975).PubMedCrossRefGoogle Scholar
  37. 37.
    D. R. Alonso, P. K. Starek, and C. R. Minick, Studies on the pathogenesis of atheroarteriosclerosis induced in rabbit cardiac allografts by the synergy of graft rejection and hypercholesterolemia, Am J Path 87:415 (1977).PubMedGoogle Scholar
  38. 38.
    T. M. Cocks, J. A. Angus, J. H. Campbell, and G. R. Campbell, Release and properties of endothelium derived relaxing factor (EDRF) from endothelial cells in culture, J Cell Physiol 123:310 (1985)PubMedCrossRefGoogle Scholar
  39. 39.
    G. Camussi, C. Tetta, M. Meroni, L. Torri-Tarelli, C. Roffinello, A. Alberton, C. Deregibus, and A. Sessa, Localization of cationic proteins derived from platelets and polymorphonuclear neutrophils and local loss of aniomic sites in glomeruli of rabbits with experimentally induced acute serum sickness, Lab Invest 55:56 (1986).PubMedGoogle Scholar
  40. 40.
    G. Gallo, T. Caulin-Glaser, S. N. Emancipator, and M. E. Lamm, Nephritogenicity and differential distribution of glomerular immune complexes related to immunogen charge, Lab Invest 48:353 (1983).PubMedGoogle Scholar
  41. 41.
    N. Simionescu, M. Simionescu, G. E. Palade, Differentiated micro- domains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites, J Cell Biol 90:605 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    U. S. Ryan, D. R. Schultz, R. J. Del Vecchio, and J. W. Ryan, Endothelial cells of bovine pulmonary artery lack receptors for C3b and for the Fc portion of immunoglobulin, Science 208:748 (1980).PubMedCrossRefGoogle Scholar
  43. 43.
    D. Westmoreland, and J. F. Watkins, The IgG receptor induced by herpes simplex virus: Studies using radioiodinated IgG. J Gen Virol 24:167 (1974).PubMedCrossRefGoogle Scholar
  44. 44.
    R. Keller, R. Peitchel, J. N. Goldman, and M. J. Goldman, An IgG-Fc receptor induced in cytomegalovirus-infected human fibroblasts, J Immunol 116:772 (1976).PubMedGoogle Scholar
  45. 45.
    M. F. Para, L. Goldstein, and P. G. Spear, Similarities and differences in the Fc-binding glycoprotein (gE) of herpes simplex firus types 1 and 2 and tentative mapping of the viral gene for this glycoprotein, J Virol 41:137 (1982).PubMedGoogle Scholar
  46. 46.
    M. Ogata, and S. Shigeta, Appearance of immunoglobulin G Fe receptor in cultured human cells infected with varicella-zoster virus. Infect Immun 26:770 (1979).PubMedGoogle Scholar
  47. 47.
    D. B. Cines, A. P. Lyss, M. Bina, R. Corkey, N. A. Kefalides, and H. M. Friedman, Fc and C3 receptors induced by herpes simplex virus on cultured human endothelial cells, J Clin Invest 69:123 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    M. F. Para, R. B. Baucke, and P. G. Spear, Glycoprotein gE of herpes simplex virus type 1: Effects of anti-gE on virion infectivity and on virus-induced Fc binding receptors, J Virol 41:129 (1982).PubMedGoogle Scholar
  49. 49.
    H. M. Friedman, G. H. Cohen, R. J. Eisenberg, C. A. Seidel, and D. B. Cines, Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells, Nature 309:633 (1984).PubMedCrossRefGoogle Scholar
  50. 50.
    D. P. Hajjar, Herpesvirus infection prevents activation of cytoplasmic oholesteryl esterase in arterial smooth muscle cells, J Biol Chem 261:7611 (1986).PubMedGoogle Scholar
  51. 51.
    D. P. Haj jar, and A. J. Grant, Herpes simplex virus infection in human arterial cells: Implications in arteriosclerosis, (manuscript in preparation).Google Scholar
  52. 52.
    H. M. Friedman, J. Wolfe, N. A. Kefalides, and E. J. Macarak, Susceptibility of endothelial cells derived from different blood vessels to common viruses, In Vitro Cell and Devel Biology22:397 (1986).Google Scholar
  53. 53.
    K. W. Moore, P. Jardien, M. L. Mietz, M. L. Trounstine, E. L. Kuff, K. Ishizaka, and C. L. Martens, Rodent IgE-binding factor genes are members of an endogenous, retrovirus like gene family, J Immunol 136:4283 (1986).PubMedGoogle Scholar
  54. 54.
    P. M. Henson, Immune complex diseases. Cellular mediators and the pathogenesis of inflammatory tissue injury produced by immune complexes, in: “Bayer Symposium VI. Experimental Models of Chronic Inflammatory Diseases,” L. E. Glynn, and H. O. Schlumberger, ed., Springer Verlag, Berlin-New York (1977).Google Scholar
  55. 55.
    P. M. Henson, and Z. G. Oades, Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates, J Clin Invest 56:1053 (1975).PubMedCrossRefGoogle Scholar
  56. 56.
    J. Fehr, and H. S. Jacob, In vitro granulocyte adherence and in vivo margination: two associated complement-dependent functions, J Exp Med 146:641 (1977).PubMedCrossRefGoogle Scholar
  57. 57.
    T. Sacks, C. F. Moldow, P. R. Craddock, R. K. Bowers, and H. S. Jacob, Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes, J Clin Invest 61:1161 (1978).PubMedCrossRefGoogle Scholar
  58. 58.
    P. M. Henson, Immune Complex disease. Cellular mediators and the pathogenesis of inflammatory tissue injury produced by immune complexes, in: “Bayer Symposium VI. Experimental M Inflammatory Diseases,” L. E. Glynn, and H. O. Schlumberger, ed., Springer Verlag, Berlin-New York (1977).Google Scholar
  59. 59.
    T. E. Hugli, and H. J. Muller-Eberhard, Anaphylatoxins: C3a and C5a, in: “Adv. Immunol. 26,” F. J. Dixon, and H. G. Kunkel, ed., Academic Press, New York (1978).Google Scholar
  60. 60.
    E. L. Becker, and P. M. Henson, In vitro studies of immunologically induced secretion of mediators from cells and related phenomena, Adv Immunol 17:193 (1973).Google Scholar
  61. 61.
    M. K. Pangburn, and H. J. Muller-Eberhard, The alternative pathway of complement, Springer Seminars in Immunology 7:163 (1984).CrossRefGoogle Scholar
  62. 62.
    M. J. Polley, and R. L. Nachman, Human complement in thrombin mediated platelet function, J; Exp Med 150:633 (1979).PubMedCrossRefGoogle Scholar
  63. 63.
    M. J. Polley, R. L. Nachman, and B. B. Weksler, Human complement in the arachidonic acid transformation pathway in platelets, I Exp Med 153:257 (1981).CrossRefGoogle Scholar
  64. 64.
    M. J. Polley, and R. L. Nachman, Human platelets activation by C3a and C3a des-arg, J ExP Med 158:603 (1983).PubMedCrossRefGoogle Scholar
  65. 65.
    T. Wiedmer, C. T. Esmon, and P. J. Sims, Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase, Mood. 68:875 (1986).Google Scholar
  66. 66.
    P. Geertinger, and H. Sorensen, On the reduced atherogenic effect of cholesterol feeding in rabbits with cogenital complement (C6) deficiency, Artery 1:177 (1975).Google Scholar
  67. 67.
    M. P. Bevilacqua, J. S. Pober, G. R. Majeau, R. S. Cotran, and M. A. Gimbrone, Jr., Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells, J Exp Med 160:618 (1984).PubMedCrossRefGoogle Scholar
  68. 68.
    M. P. Bevilacqua, J. S. Pober, G. R. Majeau, W. Fiers, R. S. Cotran, and M. A. Gimbrone, Jr., Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: Characterization and comparison with the actions of interleukin 1, Proc Natl Acad Sci USA 83:4533 (1986).PubMedCrossRefGoogle Scholar
  69. 69.
    P. P. Nawroth, and D. M. Stern, Modulation of endothelial cell hemostatic properties by tumor necrosis factor, J Exp Med 163:740 (1986).PubMedCrossRefGoogle Scholar
  70. 70.
    M. P. Bevilacqua, J. S. Pober, M. E. Wheeler, R. S. Cotran, and M. A. Gimbrone, Jr. , Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes and related leukocyte cell lines, J Clin Invest 76:2003 (1985).PubMedCrossRefGoogle Scholar
  71. 71.
    J. R. Gamble, J. M. Harlan, S. J. Klebanoff, and M. A. Vadas, Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor, Proc Natl Acad Sci USA 82:8667 (1985).PubMedCrossRefGoogle Scholar
  72. 72.
    D. E. Cavender, D. O. Haskard, B. Joseph, and M. Ziff, Interleukin 1 increases the binding of human B and T lymphocytes to endothelial cell monolayers, J Immunol 136:203 (1986).PubMedGoogle Scholar
  73. 73.
    R. P. Schleimer, and B. K. Rutledge, Cultured human vascular endothelial cells acquire adhesiveness for neutrophils after stimulation with interleukin 1, endotoxin, and tumor-promoting, phorbol diesters, J Immunol 136:649 (1986).PubMedGoogle Scholar
  74. 74.
    S. H. Tannenbaum, R. Finko, D. B. Cines, Antibody and immune complexes induce tissue factor production by human endothelial cells, 1 Immunol 137:1532 (1936).Google Scholar
  75. 75.
    C. A. Dinarello, J. G. Cannon, S. M. Wolff, H. A. Bernheim, B. Beutler, A. Cerami, I. S. Figari, M. A. Palladino, Jr., and J. V. O’Connor, Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1, J ExP Med 163:1433 (1986).PubMedCrossRefGoogle Scholar
  76. 76.
    M. L. Dustin, A. K. Rothlein, C. A. Dinarello, and T. A. Springer, Induction by IL-1 and interferon-γ, tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1), J Immunol 137:245 (1986).PubMedGoogle Scholar
  77. 77.
    M. P. Bevilacqua, J. S. Pober, M. E. Wheeler, D. Mendrick, R. S. Cotran, and M. A. Gimbrone, Jr., Interleukin-1 (IL-1) acts on vascular endothelial cells to increase their adhesivity for blood leukocytes, Fed Proc 44:1494 (1985).Google Scholar
  78. 78.
    M. P. Bevilacqua, unpublished observations.Google Scholar
  79. 79.
    L. Jalkanen, A. C. Steere, R. I. Fox, and E. C Butcher, A distinct endothelial recognition system that controls lymphocyte traffic in inflamed synovium, Science 233:556 (1986).PubMedCrossRefGoogle Scholar
  80. 80.
    P. P. Nawroth, and D. M. Stern, Modulation of endothelial cell hemostatic properties by tumor necrosis factor, J Ex.p Med 163:740 (1986).CrossRefGoogle Scholar
  81. 81.
    M. P. Bevilacqua, R. R. Schleef, M. A. Gimbrone, Regulation of the fibrinolytic system of cultured human vascular endothelium by interleukin-1, Jr., and D. J. Loskutoff, J Clin Invest 78:587 (1986).PubMedCrossRefGoogle Scholar
  82. 82.
    R. L. Nachman, K. A. Hajjar, R. L. Silverstein, and C. A. Dinarello, Interleukin-1 induces endothelial cell synthesis of plasminogen activator inhibitor, J Exp Med 163:1595 (1986).PubMedCrossRefGoogle Scholar
  83. 83.
    A. H. Stolpen, E. C. Guiñan, W. Fiers, and J. S. Pober, Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers, Am J Path 123:16 (1986).PubMedGoogle Scholar
  84. 84.
    K. J. Tracey, B. Beutler, S. F. Lowry, J. Merry-Feather, S. Wolpe, I. W. Milsark, R. J. Hariri, T. J. Fahey, III, A. Zentella, J. D. Albert, G. T. Shires, and A. Cerami, Shock and tissue injury induced by recombinant human cachectin, Science 234:470 (1986).PubMedCrossRefGoogle Scholar
  85. 85.
    F. B. Taylor, Jr., D. M. ‘Stem, P. P. Nawroth, C. T. Esmon, L. B. Hinshaw, and K. E. Blick, Activated protein C prevents E. coli induced coagulopathy and shock in the primate J. Clin Invest (in press).Google Scholar
  86. 86.
    F. B. Taylor, Jr., A. Chang, C. Esmon, A. DiAngelo, S. Vigano, D. Stern, P. Nawroth, and L. Hinshaw, Endogenous protein C prevents the coagulopathic and lethal effects of E. coli infusion in the baboon, J Clin Invest (in press).Google Scholar
  87. 87.
    T. A. Collins, J. Korman, C. T. Wake, J. M. Boss, D. J. Kappes, W. Fiers, K. A. Ault, M. A. Gimbrone, Jr., J. L. Strominger, and J. S. Pober, Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts, Proc Natl Acad Sci USA 81:4917 (1984).PubMedCrossRefGoogle Scholar
  88. 88.
    T. D. Geppert, and P. E. Lipsky, Antigen presentation by interferon-y treated endothelial cells and fibroblasts: Differential ability to function as antigen-presenting cells despite comparable la expression, J Immunol 135:3750 (1985).PubMedGoogle Scholar
  89. 89.
    T. S. Edgington, H. Helin, S. A. Gregory, G. Levy, D. S. Fair, and B. S. Schwartz, Cellular pathways and signals for the induction of biosynthesis of initiators of the coagulation protease cascade by cells of the monocyte lineage, in: “Mononuclear Phagocytes,: R. Van Furth, ed.. Martinus Nvhoff, Boston (1985).Google Scholar
  90. 90.
    L. Joasson, J. Holm, O. Skalli, G. Bondyers, and G. K. Hansson, The human arteriosclerotic plaque: Regional accumulations of T cells, macrophages, and smooth muscle cells, Arteriosclerosis 6:131 (1986).CrossRefGoogle Scholar
  91. 91.
    C. F. Moyer, and C. L. Reinisch, The role of smooth muscle cells in experimental autoimmune vasculitis. I. The initiation of delayed type hypersensitivity angiitis, Am J Path 117:380 (1984).PubMedGoogle Scholar
  92. 92.
    I. Joris, T. Zand, J. J. Nunnari, F. J. Krolikowski, and G. Majno, Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholester-olemic rats, Am J Path 113:341 (1983).PubMedGoogle Scholar
  93. 93.
    A. Fagiotto, R. Ross, and L. Harker, Studies of hypercholesterolemia in the non-human primate. I. Changes that lead to fatty streak formation, Arteriosclerosis 4:323 (1984).CrossRefGoogle Scholar
  94. 94.
    C. G. Becker, and T. Dubin, Activation of factor XII by tobacco glycoprotein, J Exp Med 146:457 (1977).PubMedCrossRefGoogle Scholar
  95. 95.
    L. Dillon, F. Glenn, C. G. Becker, Induction of acalculous chole- cystis and pneumonitis in dogs following inhalation of constituents of cigarette smoke condensate, Am J Path 82:253 (1982).Google Scholar
  96. 96.
    C. G. Becker, D. P. Hajjar, and J. M. Hefton, Tobacco constituents are mitogenic for arterial smooth muscle cells, Am J Path 120:1 (1985).PubMedGoogle Scholar
  97. 97.
    J. W. Choy, C. G.. Becker, G. W. Siskind, and T. Francus, Effects of tobacco glycoprotein on the immune system. I. TGP is a T-independent B cell mitogen for murine lymphoid cells, J Immunol 134:3193 (1985).PubMedGoogle Scholar
  98. 98.
    T. Francus, R. F. Klein, L. Staiano-Coico, G. W. Siskind, and C. G. Becker, Effects of tobacco glycoprotein on the immune system. II. TGP stimulates human peripheral blood lymphocytes to proliferate and to differentiate into immunoglobulin secreting cells, (manuscript submitted).Google Scholar
  99. 99.
    T. Francus, L. C. Thompson, B. Y. Rubin, M. K. Crow, G. W. Siskind, and C. G. Becker, Tobacco glycoprotein is a potent inducer of IL-1 production, but does not induce production of IL-2, IL-3, IFN or the expression of IL-2 receptors, (manuscript submitted).Google Scholar
  100. 100.
    T. Francus, G. W. Siskind, and C. G. Becker, The role of antigen structure in the regulation of IgE isotype expression, PNAS 80:3430 (1983).PubMedCrossRefGoogle Scholar
  101. 101.
    R. F. Klein, and C. G. Becker, Selective expression of IgE reactive with tobacco glycoprotein in human sera, Fed Proc 45:225 (1986).Google Scholar
  102. 102.
    C. G. Becker, T. Dubin, and H. P. Wiedemann, Hypersensitivity to tobacco antigen, Proc Natl Acad Sci USA 73:1712 (1976).PubMedCrossRefGoogle Scholar
  103. 103.
    R. Levi, A. A. Chenouda, J. P. Trzeciakowski, Guo Zhao-Gui, L. M. Aaronson, R. D. Luskind, C. H. Lee, W. Gay, V. A. Subramanian, J. C. McCabe, and J. C. Alexander, Dysrhythmias caused by histamine release in guinea pig and human hearts, Klin Wochenschr 60:965 (1982).PubMedCrossRefGoogle Scholar
  104. 104.
    R. Levi, J. Zavecz, J. A. Burke, and C. G. Becker, Cardiac and pulmonary anaphylaxis induced by glycoprotein isolated from tobacco leaves, and cigarette smoke condensate, Am J Path 106:318 (1982).PubMedGoogle Scholar
  105. 105.
    A. Firpo, M. J. Polley, and C. G. Becker, The effect of tobacco derived products on the human complement system, Immunobiology 164:318 (1983).Google Scholar
  106. 106.
    A. Firpo, F. Field, D. Wellner, F. Infante, C. G. Becker, and M. J. Polley, On the chemical characterization of a low molecular weight component of cigarette smoke which activates the alternative pathway of complement, in: “Complement: Laboratory and Clinical Research. XIIth International Complement Workshop,” J. S. Cooper, and S. Karger, ed., Basel (1985).Google Scholar
  107. 107.
    U. Hachfeld del Balzo, R. Levi, and M. J. Polley, Cardiac dysfunction caused by purified human C3a anaphylatoxin. Proc Natl Acad Sci USA 82:886 (1985).CrossRefGoogle Scholar
  108. 108.
    C. G. Becker, N. Van Hamont, and M. Wagner, Tobacco, cocoa, coffee and ragweed: Cross-reacting allergens that activate factor XII dependent pathways, Blood 58:861 (1981).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Carl G. Becker
    • 1
  1. 1.Cornell University Medical CollegeNew YorkUSA

Personalised recommendations