Advertisement

DNA Repair Enzymes in Hyperthermophilic Archaea

  • Jocelyne Diruggiero
  • Frank T. Robb
Chapter

Abstract

The presence of hyperthermophilic microorganisms in hydrothermal environments at temperatures above 90°C is now well established (Stetter, 1990). In fact, isolates from deep sea marine hydrothermal vents can grow optimally under pressure at temperatures up to 113°C (Blochl et al., 1997). Most of the hyperthermophiles are members of the Domain Archaea as defined by Woese et al. (1990), and their existence raises the question of how metabolic processes are sustained at extremely high temperatures. Not surprisingly, all of the enzymes isolated to date from hyperthermophiles display unusual thermostability (Adams, 1993; DiRuggiero and Robb, 1996), however, temperature in the region of 100°C greatly accelerate the spontaneous chemical degradation of DNA by orders of magnitude (Lindahl, 1993). Despite this, hyperthermophiles such as Pyrococcus furiosus are capable of rapid growth at or near to 100°C (Fiala and Stetter, 1986) and apparently maintain a normal level of genetic stability (Brown et al., 1994; Keeling and Doolittle, 1995). We suggest that efficient DNA repair and replication mechanisms are a prerequisite for growth and survival of these microorganisms, yet these processes remain largely unexplored. Further, despite extensive sequencing of Archaeal genomes and the recent publication of the complete genome sequence of the methanogen Methanococcus jannaschii (Bult et al., 1996) very little is known of the proteins involved in DNA repair and replication in hyperthermophilic Archaea.

Keywords

Optimal Growth Temperature Archaeal Genome Advance Technology Program Methanobacterium Thermoautotrophicum Haloferax Volcanii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.W.W. 1993, Ann. Rev. Microbiol. 47: 627–658CrossRefGoogle Scholar
  2. Barnes, C.J., Wahl, A.F., Shen, B., Park, M..S.. and Bambara, R.A,. 1996, J. Biol. Chem., 217: 29624–29631Google Scholar
  3. Bloch, E. Rachel, R. Burgraf, S. Hafenbradl, D., Jannasch, H.W. Stetter, K.O., 1997, Extremophiles 1: 14–21CrossRefGoogle Scholar
  4. Bouyoub, A., Barbier, G., Querellou, J. and Forterre, P. 1996, Gene, 167: 147–149CrossRefGoogle Scholar
  5. Brown, J.R., Masuchi, Y., Robb, F.T. and Doolittle, W.F. 1994, J. Mol. Evol., 38 (6): 566–576PubMedCrossRefGoogle Scholar
  6. Bult, C.J., White, O., Olson, G.J., Zhou, L., Fleishmann, R.D., Sutton, G.G., Blake, J.A., FitGerald, L.M., Clayton, R.A., Gocayne, J.D. and et al. 1996, Science, 273: 1058–1073PubMedCrossRefGoogle Scholar
  7. DeMott, M.S., Shen, B., Park, M.S. and Bambara, R.A. 1996, J. Biol. Chem., 271: 30068–30076PubMedCrossRefGoogle Scholar
  8. DiRuggiero, J. and F.T. Robb, 1996, In Enzymes and Proteins from Hyperthermophilic Microorganisms. Adams, M.W.W. (ed.). Academic Press.pp 311–339.CrossRefGoogle Scholar
  9. DiRuggiero, J., Santangelo, N., Nackerdien, Z., Ravel, J. and Robb, F. T. 1997, J. Bacteriol. 179: 4643–4645PubMedGoogle Scholar
  10. Fiala, G. and Stetter, K.O., 1986, Arch. Microbiol, 145: 56–61CrossRefGoogle Scholar
  11. Friedberg, E.C., Walker, G.C. and Siede, W. 1995, DNA Repair and Mutagenesis. Washington, D.C. ASN Press Grogan, D.W. 1997, Microbiology. 143: 1071–1076Google Scholar
  12. Harrington, J.J. and Lieber, M.R. 1994, EMBO J., 13: 1235–1246PubMedGoogle Scholar
  13. Jacobs, K.L. and Grogan, D.W. 1997, J. Bacteriol., 179: 3298–3303PubMedGoogle Scholar
  14. Keeling, P.J. and Doolittle, W.F. 1995, Mol. Microbiol., 17: 39–400Google Scholar
  15. Kulaeva, 0.L., Koonin, E.V., McDonald, J.P., Randall, S.K., Rabinovich, N., Connaughton, J.F., Levine, A.S. and Woodgate, R. 1996, Mutation Res., 357: 245–253CrossRefGoogle Scholar
  16. Lieber, M.R. 1997, BioEssays, 19: 233–240PubMedCrossRefGoogle Scholar
  17. Lindahl,T., 1993, Nature, 362: 709–715CrossRefGoogle Scholar
  18. McCready, S. 1996, Mutat. Res. 364: 25–32PubMedCrossRefGoogle Scholar
  19. Peak, M.J., Robb, F.T. and Peak, J.G. 1995, J. Bacteriol., 177: 6316–6318PubMedGoogle Scholar
  20. Radman, M. 1975, In A. P. Hanawalt and R.B. Setlow (Eds.), Molecular Mechanisms for Repair of DNA, (pp. 355–367 ). New York: Plenum Publishing Corp.CrossRefGoogle Scholar
  21. Rashid, N., Morikawa, M. and Imanaka, T. 1996, Mol. Gen. Genet., 253: 397–400PubMedCrossRefGoogle Scholar
  22. Sandler, S.J., Satin, L H., Samra, H.S. and Clark, A.J. 1996, Nucleic Acids Res., 24: 2125–2132Google Scholar
  23. Sommers, C.H., Miller, E.J.. Dujon, B., Prakash, S. and Prakash, L 1995, J. Biol. Chem., 270: 4193–4196PubMedCrossRefGoogle Scholar
  24. Stetter, K.O., Fiala, G., Huber, R. and Segerer, A. 1990, FEMS Microbiol. Rev., 75: 117–124CrossRefGoogle Scholar
  25. Woese, C.R., Kandler,O. and Wheelis, M.L. 1990, Proc. Nat. Acad. Sci. USA, 87: 4576–4579PubMedCrossRefGoogle Scholar
  26. Woods, W.G. and Dyall-Smith, M.L. 1997, Mol. Microbiol, 23: 791–797.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jocelyne Diruggiero
    • 1
  • Frank T. Robb
    • 1
  1. 1.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations