Advertisement

Changes in Apparent Functions of Component Proteins of Adenylate Cyclase System in Rat Brain by Drugs Acting on the Central Nervous System

  • S. Ishibashi
  • T. Kurokawa
  • T. Dan’ura
  • A. Yamashita
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)

Abstract

Transmembrane signalling function of adenylate cyclase system in the cell membranes is discharged and regulated by interactions of the component proteins; receptor protein (either stimulatory (Rs) or inhibitory (Ri)), guanine nucleotide-binding regulatory trimeric protein (either stimulatory (Gs) or inhibitory (Gi)), and catalytic protein (C) for cyclic AMP production (1,2). GTP and its analogs such as guanosine 5′-(β,γ-imino)triphosphate (GppNHp) and guanosine 5′-(γ-thio)triphosphate, regulate the function of G proteins in the presence of Mg2+ (3,4), while F- does in the presence of Al3+ (5). On the other hand, divalent cations, such as Mg2+ and Mn2+, and forskolin directly activate C (6,7). It is also known that cholera and pertussis toxins affect the functions of Gs and Gi, respectively, through ADP-ribosylation of their α-subunits (8, 9).

Keywords

Adenylate Cyclase Pertussis Toxin Adenylate Cyclase Activity Synaptic Membrane Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Ross and A.G. Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem. 49: 533 (1980).CrossRefGoogle Scholar
  2. 2.
    A. G. Gilman, G proteins: Transducers of receptor-generated signals, Ann. Rev. Biochem. 56: 615 (1987).CrossRefGoogle Scholar
  3. 3.
    M. Rodbell, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17 (1980).CrossRefGoogle Scholar
  4. 4.
    L. E. Limbird, Activation and attenuation of adenylate cyclase, Biochem. J. 195, 1 (1981).Google Scholar
  5. 5.
    P. C. Sternweis and A.G. Gilman, Aluminum: A requirement for activation of the retulatory component of adenylate cyclase by fluoride, Proc. Natl. Acad. Sci. USA 79: 4888 (1982).CrossRefGoogle Scholar
  6. 6.
    S. G. Somkuti, J.D. Hildebrandt, J.t. Herberg, and R. Ieynger, Divalent catio regulation of adenylyl cyclase, J. Biol. Chem. 257: 6387 (1982).Google Scholar
  7. 7.
    K. B. Seamon and J.W. Daly, Forskolin: A unique diterpene activator of cyclic AMP-generating systems, J. Cyclic Nucleotide Res. 7: 210 (1981).Google Scholar
  8. 8.
    J. Moss and M. Vaughan, Activation of adenylate cyclase by choleragen, Ann. Rev. Biochem. 48: 581 (1979).CrossRefGoogle Scholar
  9. 9.
    T. Katada and M. Ui, Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein, Proc. Natl. Acad. Sci. USA 79: 3129 (1982).CrossRefGoogle Scholar
  10. 10.
    H. Itoh, T. Kozasa, S. Nagata, S. Nakamura, T. Katada, M. Ui, S. Iwai, E. Ohtsuka, H. Kawasaki, K. Suzuki, and Y. Kaziro, Molecular cloning and sequence determination of cDNAs coding for a-subunits of G, Gi, and G proteins from rat brain, Proc. Natl. Acad. Sci. USA 83: 3776 (1986).CrossRefGoogle Scholar
  11. 11.
    R. E. Yeager, W. Heideman, G.B. Rosenberg, and D.R. Storm, Purification of the calmodulin-sensitive adenylate cyclase from bovine cerebral cortex, Biochemistry 24: 3776 (1985).CrossRefGoogle Scholar
  12. 12.
    E. M. Ross, Physical separation of the catalytic and regulatory proteins of hepatic adenylate cyclase, J. Biol. Chem. 256: 1949 (1981).Google Scholar
  13. 13.
    H. Kurose and M. Ui, Functional uncoupling of muscarine receptors from adenylate cyclase in rat cardiac membranes by the active component of islet-activating protein, pertussis toxin, J. Cyclic Nucleotide Protein Phosphorylation Res. 9: 305 (1983).Google Scholar
  14. 14.
    Y. Salomon, C. Londos, and M. Rodbell, A highly sensitive adenylate cyclase assay, Anal. Biochem. 58: 541 (1974).CrossRefGoogle Scholar
  15. 15.
    T. Kurokawa, M. Kurokawa, and S. Ishibashi, Antimicrotubular agents as inhibitors of desensitization to catecholamine stimulation of adenylate cyclase in Ehrlich ascites tumor cells, Biochim. Biophys. Acta 583: 467 (1979).CrossRefGoogle Scholar
  16. 16.
    H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265 (1951).Google Scholar
  17. 17.
    A. Yamashita, T. Kurokawa, K. Higashi, T. Dan’ura, and S. Ishibashi, Forskolin stabilizes a functionally coupled state between activated guanine nucleotid-binding stimulatory regulatory protein, Ns, and catalytic protein of adenylate cyclase system in rat erythrocytes, Biochem. Biophys. Res. Commun. 137: 190 (1986).CrossRefGoogle Scholar
  18. 18.
    J. C. Fong, K. Okada, and M. Goldstein, The effect of GTP on benzodiazepine receptors, Eur. J. Pharmacol. 77: 57 (1982).CrossRefGoogle Scholar
  19. 19.
    S. -C. Fung and M. Fillenz, Effects of guanyl nucleotides on [3H]flunitrazepam binding to rat hippocampal synaptic membranes: Equilibrium binding and dissociation kinetics, J. Neurochem. 44: 233 (1985).CrossRefGoogle Scholar
  20. 20.
    H. Mohler and T. Okada, Benzodiazepine receptor: Demonstration in the central nervous system, Science 198: 175 (1977).CrossRefGoogle Scholar
  21. 21.
    A. C. Bowling and R.J. DeLorenzo, Micromolar affinity benzodiazepine receptor: Identification and characterization in central nervous system, Science 216: 1247 (1982).CrossRefGoogle Scholar
  22. 22.
    H. Schoemarker, R.W. Boles, W.D. Horst, and H.I. Yamamura, Specific high-affinity binding sites for [3H]Ro5–4864 in rat brain and kidney, J. Pharmacol. Exp. Ther. 225: 61 (1983).Google Scholar
  23. 23.
    S. E. File, A.R. Green, D.J. Nutt, and N.D. Vincent, On the convulsant action of Ro5–4864 and the existence of a micromolar benzodiazepine binding site in rat brain, Psychopharmacology 82: 199 (1984).CrossRefGoogle Scholar
  24. 24.
    W. C. Taft and R.J. DeLorenzo, Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations, Proc. Natl. Acad. Sci. USA 81: 3118 (1984).CrossRefGoogle Scholar
  25. 25.
    J. A. Ferrendelli: Epilepsy and Cyclic Nucleotide, in: “Advances in Cyclic Nucleotide Research Vol. 12,” P. Hamet and H. Sands, ed., Raven Press, New York, p. 199 (1980).Google Scholar
  26. 26.
    G. L. Gessa, G. Krishna, J. Forn, A. Tagliamonte, and B.B. Brodie, Behavioral and vegetative effects produced by dibutyryl cylic AMP injected into different areas of the brain,in: “Role of Cyclic AMP in Cell Function: Advances in Biochemical Psycho-pharmacology Vol.3,” P. Greengard and E. Costa, ed., Raven Press, New York, p. 371 (1970).Google Scholar
  27. 27.
    T. Dan’ura, T. Kurokawa, A. Yamashita, H. Yanagiuchi, and S. Ishibashi, Relationship between the inhibition of adenylate cyclase by pentobarbital and the functional coupling of Ns and the catalytic unit, Biochem. Biophys. Res. Commun. 140: 237 (1986).CrossRefGoogle Scholar
  28. 28.
    T. Dan’ura, T. Kurokawa, A. Yamashita, K. Higashi, and S. Ishibashi, Inhibition of brain adenylate cyclase by barbiturates through the effect on the interaction between guanine nucleotide-binding stimulatory regulatory protein and catalytic unit, J. Pharmacobio-Dyn. 10: 98 (1987).CrossRefGoogle Scholar
  29. 29.
    T. Dan’ura, T. Kurokawa, A. Yamashita, H. Yanagiuchi, and S. Ishibashi, Inhibition of rat brain adenylate cyclase by benzodiazepine through the effects on Gi and catalytic proteins, Life Sci. in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • S. Ishibashi
    • 1
  • T. Kurokawa
    • 1
  • T. Dan’ura
    • 1
  • A. Yamashita
    • 1
  1. 1.Dept. of Physiological ChemistryHiroshima Univ. School of MedicineMinami-ku, Hiroshima 734Japan

Personalised recommendations