Skip to main content

Possible Roles of Protein Kinase C in Neurotransmission

  • Chapter
Book cover Neuroreceptors and Signal Transduction

Abstract

Protein kinase C (PKC) is an ubiquitous Ca2+-activated phospholipiddependent protein kinase abundant in the central nervous system(1–4). This enzyme is activated by 1,2-diacylglycerol which transiently appears in the cell membrane, as a consequence of receptor-mediated and voltage-dependent hydrolysis of inositol phospholipids. The link of the phosphoinositide system to PKC seems to be that of a major second messenger system in the central nervous system and the possible involvement in significant steps in synaptic transmission have to be given attention. Until recently, PKC was thought to be a single entity, however, molecular cloning analysis has shown that there is a family of PKC-related genes(5–11). At least four subspecies of PKC (α, βI, βII and γ) are expresssed in the mammalian brain. Enzymatically, three major isozymes of PKC (types I, II and III) have been resolved from rat brains, using hydroxyapatite column chromatography(12). All subtypes were activated by diacylglycerol as well as tumor-promoting phorbol esters in the presence of Ca2+ and phosphatidylserine. They bound radioactive phorbol ester and showed similar kinetic properties, although the enzyme having the β-sequence was active at very low concentrations of Ca (8,13). The amino acid sequence of these three types has been identified by comparison with the enzyme separately expressed in the COS cells transfected by respective cDNAs-containing plasmids (14). Type I corresponds to the enzyme encoded with the γ-sequence. Type II is a mixture of βI- and βII-subspecies derived from alternative splicing of a single gene. Type III corresponds to α-subspecies. The αI-and βII-subspecies differ by only about 50 amino acid residues in the carboxyl-terminal regions, show similar kinetic properties and are not separable by conventional enzyme purification procedures. To characterize the tissue specificity of these subspecies, a specific antibody against each subspecies should be a pertinent tool. We present here the cell specific expression of each subspecies of PKC in the rat brain, determined using subspecies specific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Nishizuka, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature (Lond.)308: 693 (1984a).

    Article  Google Scholar 

  2. Y. Nishizuka, Turnover of inositol phospholipids and signal transduction, Science 255: 1365 (1984b).

    Article  Google Scholar 

  3. Y. Nishizuka, Studies and perspectives of protein kinase C, Science 233: 305 (1986).

    Article  Google Scholar 

  4. J.F. Kuo, R.G.G. Andersson, B.G. Wise, L. Mackerlova, I. Salomnsson, N.L. Brackett, N. Katoh, M. Shoji, and R.W. Wrenn, Calcium-dependent protein kinase: Widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine, Proc. Natl. Acad. Sci. 77: 7039 (1980).

    Article  Google Scholar 

  5. J.L. Knopf, M.-H. Lee, L.A. Sultzman, R.W. Kriz, C.R. Loomis, R.M. Hewick. and R.M. Bell, Cloning and expression of multiple protein kinase C cDNAs, Cell 46: 491 (1986).

    Article  Google Scholar 

  6. Y. Ono, T. Kurokawa, K. Kawahara, O. Nishimura, R. Marumoto, K. Igarashi, Y. Sugino, U. Kikkawa, K. Ogita, and Y. Nishizuka, Cloning of rat brain protein kinase C complementary DNA. FEBS Lett. 203: 111 (1986a).

    Article  Google Scholar 

  7. Y. Ono, T. Kurokawa, T. Fujii, K. Kawahara, O. Nishimura, K. Igarashi, U. Kikkawa, K. Ogita and Y. Nishizuka, Two types of complementary DNAs of rat brain protein kinase C, heterogeneity determined by alternative splicing, FEBS Lett. 206: 347 (1986b).

    Article  Google Scholar 

  8. Y. Ono, U. Kikkawa, K. Ogita, T. Fujii, T. Kurokawa, Y. Asaoka, K. Sekiguchi, K. Ase, K. Igarashi, and Y. Nishizuka, Expression and properties of two types of protein kinase C determined by alternative splicing from a single gene, Science 236: 1116 (1987).

    Article  Google Scholar 

  9. P.J. Parker, L. Coussens, N. Totty, L. Rhee, S. Young, E. Chen, S. Stabel, M.D. Waterfield, and A. Ullrich, The complete primary structure of protein kinase C -the major phorbol ester receptor. Science 233: 853 (1986).

    Article  Google Scholar 

  10. L. Coussens, P.J. Parker, L. Rhee, T.L. Yang-Feng, E. Chen, M.D. Waterfield, U. Francke, and A. Ullrich, Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signalling pathways, Science 233: 859 (1986).

    Article  Google Scholar 

  11. S. Ohno, H. Kawasaki, S. Imajoh, K. Suzuki, M. Inagaki, H. Yokokura. T. Sakoh, and H. Hidaka, Tissue-specific expression of three distinct types of rabbit protein kinase C, Nature (Lond.) 325: 161 (1987).

    Article  Google Scholar 

  12. K.P. Huang, H. Nakabayashi, and F.L. Huang, Isozymic forms of rat brain Cat+-activated and phospholipid-dependent protein kinase, Proc. Natl. Acad. Sci. 83: 8535 (1986).

    Article  Google Scholar 

  13. K. Sekiguchi, T. Tsukuda, K. Ogita, U. Kikkawa, and Y. Nishizuka, Three distinct forms of rat brain protein kinase C: differential response to unsaturated fatty acids, Biochem. Biophys. Res. Commun. 145: 797 (1987).

    Article  Google Scholar 

  14. U. Kikkawa, Y. Ono, K. Ogita, T. Fujii, Y. Asaoka, K. Sekiguchi, Y. Kosaka, K. Igarashi, and Y. Nishizuka, Identification of the structures of multiple subspecies of protein kinase C expressed in rat brain. FEBS Lett. 217: 227 (1987).

    Article  Google Scholar 

  15. T. Kitano, T. Hashimoto, U. Kikkawa, K. Ase, N. Saito, C. Tanaka, Y. Ichimori, K. Tsukamoto, and Y. Nishizuka, Monoclonal antibodies against rat brain protein kinase C and their application to immunocytochemistry in nervous tissues, J. Neurosci. 7: 1520 (1987).

    Google Scholar 

  16. G. Köhler, and C. Milstein, Continuous culfures of fused cells secreting antibody of predefined specificity, Nature 256: 495 (1975).

    Article  Google Scholar 

  17. P.L. EY, S.J. Prowse, and C.R. Jenkin, Isolation of pure I9G1, I9G2a, and IgG2b immunoglobulins from mouse serum using protein A-Sepharose, Immunochemistry 15: 429 (1978).

    Article  Google Scholar 

  18. C. Tanaka, and K. Taniyama, Substance P provoked r-aminobutyric acid release from the myenteric plexus of the guinea-pig small intestine, J. Physiol. (Lond.) 362: 319 (1985).

    Google Scholar 

  19. Y. Okada, C. Nitsch-Hassler, J.K. Kim, I.J. Bak, and R. Hassler, Role of r-aminobutyric acid (GABA) in the extrapyramidal motor system. I. Regional distribution of GABA in rabbit, rat, guinea pig and baboon CNS. Exp. Brain Res. 13: 514 (1971).

    Article  Google Scholar 

  20. R.F. Akers, D.M. Lovinger, P.A. Colly, D.J. Linden, and A. Routtenberg, Translocation of protein kinase C activity may mediate hippocampal long-term potentiation, Science 231: 587 (1986).

    Article  Google Scholar 

  21. G.-Y. Hu, 0. Hvalby, S.I. Walaas, K.A. Albert, P. Skjeflo, P. Andersen, and P. Greengard, Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation, Nature 328: 426 (1987).

    Article  Google Scholar 

  22. R.C. Malenka, G.S. Ayoub, and R.A. Nicoll, Phorbol esters enhance transmitter release in rat hippocampal slices, Brain Res. 403: 198 (1987).

    Article  Google Scholar 

  23. P. De Camilli, P.E. Miller, P. Levitt, U. Walter, and P. Greengard, Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker, Neuroscience 11: 761 (1984).

    Article  Google Scholar 

  24. R.F. Akers, and A. Routtenberg, Protein kinase C phosphorylates a 47Mr protein (F1) directly related to synaptic plasticity, Brain Res. 334: 147 (1985).

    Article  Google Scholar 

  25. N. Saito, U. Kikkawa, Y. Nishizuka, and C. Tanaka, Distribution of protein kinase C like immunoreactive neurons in rat brain, J. Neurosci. in press. (1988).

    Google Scholar 

  26. C. Tanaka, K. Taniyama, and M. Kusunoki, A phorbol ester and A231ß7 act synergistically to release acetylcholine from the guinea pig ileum, FEBS Lett. 175: 165 (1984).

    Article  Google Scholar 

  27. A.R. Wakade, R.K. Malhorta, and T.D. Wakade, Phorbol ester, an activator of protein kinase C, enhances calcium-dependent release of sympathetic neurotransmitter, Naunyn Schmied. Arch. Pharmacol. 331: 122 (1985).

    Article  Google Scholar 

  28. H. Shuntoh, and C. Tanaka, Activation of protein kinase C potentiates norepinephrine release from sinus node, Am. J. Physiol. 251: C833 (1986).

    Google Scholar 

  29. C. Tanaka, H. Fujiwara, and Y. Fujii, Acetylcholine release from guinea pig caudate slices evoked by phorbol ester and calcium, FEBS Lett. 195: 129 (1986).

    Article  Google Scholar 

  30. T. Pozzan, G. Gatti, N. Dozio, L.M. Vicentini and J. Melclolesi, Ca2t dependent and -independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation ? J. Cell. Biol. 99: 628 (1984).

    Article  Google Scholar 

  31. N. Zurgil, and N. Zisapel, Phorbol ester and calcium act synergistically to enhance neurotransmitter release by brain neurons in culture, FEBS Lett. 185: 257 (1985).

    Article  Google Scholar 

  32. R.A. Nichols, J.W. Haycock, J.K.T. Wang, and P. Greengard, Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes, J. Neurochem. 48: 615 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tanaka, C. et al. (1988). Possible Roles of Protein Kinase C in Neurotransmission. In: Kito, S., Segawa, T., Kuriyama, K., Tohyama, M., Olsen, R.W. (eds) Neuroreceptors and Signal Transduction. Advances in Experimental Medicine and Biology, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5971-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5971-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5973-0

  • Online ISBN: 978-1-4757-5971-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics