Biochemical Studies on the Muscarinic Acetylcholine Receptor

  • T. Haga
  • G. Berstein
  • T. Nishiyama
  • H. Uchiyama
  • K. Ohara
  • K. Haga
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)


The muscarinic acetylcholine receptor was functionally defined, based on the actions of specific drugs on specific cells or tissues (for a review, see ref. 1). The development of specific radio-labeled ligands (2,3) enabled us to estimate and characterize the ligand-binding sites independently of their functions. Quantitative analysis of the binding of specific ligands with membrane preparations allowed to define at least three different subtypes of muscarinic receptors (4,5), and the regional distribution of these subtypes was also determined (6,7). Although different kinds of actions are known to be elicited by muscarinic agonists depending on species of cells or tissues, the relation between the subtypes and the actions elicited by their activation is not straightforward so far (for example, see ref. 8).


Muscarinic Receptor Atrial Receptor Guanine Nucleotide Muscarinic Acetylcholine Receptor Muscarinic Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burgen, A.S.V., Muscarinic receptos-an overview, Trends Pharmacol. Sci. (Suppl.) 1–3 (1984).Google Scholar
  2. 2.
    Yamamura, H.I., and Snyder, S.H., Muscarinic cholinergic binding in rat brain, Proc. Natl. Acad. Sci. U.S.A. 71, 1725–1729 (1974).CrossRefGoogle Scholar
  3. 3.
    Birdsall, N.J.M., and Hulme, E.C., Biochemical studies on muscarinic acetylcholine receptors, J. Neurochem. 27, 7–16 (1976).CrossRefGoogle Scholar
  4. 4.
    Hammer, R., and Giachetti, A., Muscarinic receptor subtype: M1 and M2 biochemical and functional characterization, Life Sci. 31, 2991–2998 (1982).CrossRefGoogle Scholar
  5. 5.
    Hammer, R., Giraldo, E., Schiavi, G,B., Monferini, E., and Ladinsky, H., Binding profiles of a novel cardioselective muscarine receptor antagonist, AF-DX 116, to membranes of peripheral tissues and brain in the rat, Life Sci., 38, 1653–1662 (1986).Google Scholar
  6. 6.
    Watson, M., Roeske, W.R., Vickroy, T. W., Smith, T.L., Akiyama, K., Gulya, K., Duckles, S.P., Serra, M., Adem, A., Nordberg, A., Gehlert, D.R., Wamsley, J.K., and Yamamura, H.I., Biochemical and functional basis of putative mescarinic receptor subtypes and its implications, Trends Pharmacol. Sci. (Suppl.) 46–55 (1986).Google Scholar
  7. 7.
    Palacios, J.M., Cortos, R., Probst, A., and Karobath, M., Mapping of subtypes of muscarinic receptors in the human brain with receptor autoradiographic techniques, Trends Pharmacol. Sci. (Suppl.) 56–60 (1986).Google Scholar
  8. 8.
    Harden, T.K., Tanner, L.I., Martin, M.W., Nakahata, N., Hughes, A.R., Hepler, J.R., Evans, T., Masters, S.B., and Brown, J.H., Characterization of two biochemical responses to stimulation of muscarinic cholinergic receptors, Trends Pharmacol. Sci. (Suppl.), 14–18 (1986).Google Scholar
  9. 9.
    Beld, A.J., and Ariéns, E.J., Stereospecific binding as a tool in attempts to localize and isolate muscarinic receptors, Eur. J. Phirmac. 25, 203–209 (1974).CrossRefGoogle Scholar
  10. 10.
    Hurko, O., Specific [H]Quinuclidinyl benzilate binding activity in digitonin-solubilized preparations from bovine brain, Archiv. Biochem. Biophys. 190, 435–445 (1978).CrossRefGoogle Scholar
  11. 11.
    Haga, T., Solubilization of muscarinic acetylcholine receptors by L-alpha-lysophosphatidylcholine, Biomed. Res., 1, 265–268 (1980).Google Scholar
  12. 12.
    Haga, T., Nukada, T., and Haga, K., Solubilization of the muscarinic acetylcholine receptors by sodium cholate: Stabilization of the receptor by muscarinic ligands, Biomed. res. 2, 695–698 (1982).Google Scholar
  13. 13.
    Haga, T., and Haga, K. unpublishedGoogle Scholar
  14. 14.
    Andre, C., DeBacker, J.P., Guillet. J.G., Vanderheyden, P., Vauquelin, G., and Strosberg, A.D., Purification of muscarinic acetylcholine receptors by affinity chromatography, Eur. Mol. Biol. Org. J. 2, 499–504 (1983).Google Scholar
  15. 15.
    Haga, K., and Haga, T., Affinity chromatography of the muscarinic acetylcholine receptor, J. Biol. Chem. 258, 13575–13579 (1983).Google Scholar
  16. 16.
    Peterson, G.L., Herron, G.S., Yamaki, M., Fullerton, D.S., and Schimerlik, M.I., Purification of the muscarinic acetylcholine receptor from porcine atria, Proc. Natl. Acad. Sci. U.S.A. 81, 4993–4997 (1984).CrossRefGoogle Scholar
  17. 17.
    Haga, K. and Haga, T., Purification of the muscarinic acetylcholine receptor from porcine brain, J. Biol. Chem. 260, 7927–7935 (1985).Google Scholar
  18. 18.
    Wheatley, M., Birdsall, N.J.M., Curtis, C., Eveleigh, P., Pedder, E.K., Poyner, D., Stockton, J.M., and Hulme, E.C., The structure and properties of the purified muscarinic acetylcholine receptor from rat forebrain, Trans. Biochem. Soc. 15, 113–116 (1987).Google Scholar
  19. 19.
    Peterson, G.L., Rosenbaum, L.C., Broderick, D.J., Schimerick, M.I., Physical properties of the purified cardiac muscarinic acetylcholine receptor, Biochemistry 25, 3189–3202 (1986).CrossRefGoogle Scholar
  20. 20.
    Haga, T., Molecular size of muscarinic acetylcholine receptors of rat brain, FEBS Lett. 113, 68–72 (1980).CrossRefGoogle Scholar
  21. 21.
    Berrie, C., Birdsall, N.J.M., Haga, K., Haga, T., and Hulme, E.C., Keen, M., Hydrodynamic properties of muscarinic acetylcholine receptors solubilized from rat forebrain, Br. J. Pharmac. 82, 839–851 (1984).Google Scholar
  22. 22.
    Uchida, S., Matsumoto, K., Takeyasu, K., Higuchi, H., and Yoshida, H., Molecular mechanism of the effects of guanine nucleotide and sulfhydryl reagent on muscarinic receptors in smooth muscles studied by radiation inactivation, Life Sci. 31, 201–209 (1982).CrossRefGoogle Scholar
  23. 23.
    Berstein, G., and Haga, T. unpublishedGoogle Scholar
  24. 24.
    Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Kojima, M., Matsuo, H., and Numa, S., Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor, Nature 323, 411–416 (1986).CrossRefGoogle Scholar
  25. 25.
    Kubo, T., Maeda, A., Sugimoto, K., Akiba, I., Mikami, A., Takahashi, H., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Matsuo, H., Hirose, T., and Numa, S., Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence, FEBS Lett. 209, 367–372 (1986).CrossRefGoogle Scholar
  26. 26.
    Fukuda, K, Kubo, T., Akiba, I., Maeda, A., Mishina, M., and Numa, S., Molecular distinction between muscarinic acetylcholine receptor subtypes, Nature 327, 623–625 (1987).CrossRefGoogle Scholar
  27. 27.
    Bonner, T.I., Buckley, N.J., Young, A.C., and Brann, M.R., Identification of a family of muscarinic acetylcholine genes, Science, 237, 527–532 (1987).CrossRefGoogle Scholar
  28. 28.
    Ariéns, E.J., and Beld, A.J., The receptor concept in evolution, Biochem, Pharmacol. 26, 913–918 (1977).Google Scholar
  29. 29.
    Haga, T., Characterization of muscarinic acetylcholine receptors solubilized by L-alpha-lysophosphatidylcholine and Lubrol PX in “Pharmacologic and biochemical aspects of neurotransmitter receptors”, ed. by Yoshida, H., and Yamamura, H. I., John Wiley $ Sons, Inc. pp 4358 (1983).Google Scholar
  30. 30.
    Berstein, G., Haga, K., Haga, T., and Ichiyama, A., Agonist and antagonist binding of muscarinic acetylcholine receptors purified from porcine brain: interconversion of high and low affinity sites by sulfhydryl reagents, submitted.Google Scholar
  31. 31.
    Uchida, S., Matsumoto, K., Mizushima, A., Osugi, T., Higuchi, H., and Yoshida, H., Effects of guanine nucleotide and sulfhydryl reagent of subpopulations of muscarinic acetylcholine receptors in mammalian hearts: possible evidence for interconversion of super-high and low affinity agonist binding sites, Eur. J. Pharmacol. 100, 291–298 (1984).CrossRefGoogle Scholar
  32. 32.
    Nukada, T., Haga, T., and Ichiyama, A., Muscarinic receptors in porcine caudate nucleus. II. Different effects of N-ethylmaleimide on [H]cis-methyldioxolane binding to heat-labile (guanine nucleotide-sensitive) sites and heat-stable (guanine nucleotide-insensitive) sites, Molec. Pharmac. 24, 374–379 (1983).Google Scholar
  33. 33.
    Nishiyama, T., Ikegaya, T., Berstein, G., Haga, K., Haga, T., and Ichiyama A. to be publishedGoogle Scholar
  34. 34.
    Nathanson, N.M., Molecular properties of the muscarinic acetylcholine receptor, Ann. Rev. Neurosci. 10, 195–236 (1987).CrossRefGoogle Scholar
  35. 35.
    Haga, K., Haga, T., Ichiyama, A., Katada, T., Kurose, H., and Ui, M., Functional reconstitution of purified muscarinic receptors and the inhibitory guanine nucleotide regulatory protein, Nature 316, 731–733 (1985).CrossRefGoogle Scholar
  36. 36.
    Kurose, K., Katada, H., Haga, T., Haga, K., Ichiyama, A., and Ui, M., Functional interaction of purified muscarinic receptors with purified inhibitory guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles, J. Biol. Chem. 261, 6423–6428 (1986).Google Scholar
  37. 37.
    Haga, K., Haga, T., and Ichiyama, A., Reconstitution of the muscarinic acetylcholine receptor: Guanine nucleotide-sensitive high affinity binding of agonists to purified muscarinic receptors reconstituted with GTPbinding proteins (Gi and Go), J. Biol. Chem. 261, 10133–10140 (1986).Google Scholar
  38. 38.
    Haga, K., Haga, T., Uchiyama, H., Ichiyama, A., Kangawa, K., and Matsuo, H., The third GTP binding protein which interacts with the muscarinic acetylcholine receptor, submittedGoogle Scholar
  39. 39.
    Sternweis, P.C., and Robishaw, J.D., Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain, J. Biol. Chem. 259, 13806–13813 (1984).Google Scholar
  40. 40.
    Asano, T., Ui, M., and Ogasawara, N., Prevention of the agonist binding to gamma-aminobutyric acid B receptors by guanine nucleotides and islte-activating protein, pertussis toxin, in bovine cerebral cortex, J. Biol. Chem. 260, 12653–12658 (1985).Google Scholar
  41. 41.
    Ohara, K., Haga, K., Berstein, G., Haga, T., Ichiyama, A., and Ohara, K., The interation between D-2 dopamine receptors and GTP-binding proteins, submittedGoogle Scholar
  42. 42.
    Asano, T., Katada, T., Gilman, A.G., and Ross, E.M., Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles, J. Biol. Chem., 259, 9351–9354 (1984).Google Scholar
  43. 43.
    Nukada, T., Haga, T., and Ichiyama, A., Muscarinic receptors in porcine caudate lucleus I. Enhancement by nickel and other cations of [H]cis-methyldioxolane binding to guanyl nucleotide-sensitive sites, Molec. Pharmac. 24, 366–373 (1983).Google Scholar
  44. 44.
    Haga, T., and Haga, K., Reconstitution of muscarinic cholinoceptors and GTP-binding proteins from porcine brain, in “Cellular and molecular basis of cholinergic function”, ed. by Dowdall, M.J. and Hawthorne, J.N., pp 104–119. (1987).Google Scholar
  45. 45.
    Haga, T., and Haga, K., Interaction of the muscarinic acetylcholine receptor and GTP-binding proteins, Biomed. Res. in pressGoogle Scholar
  46. 46.
    Evans, T., Hepler, J.R., Masters, S.B., Brown, J.H., and Harden, T.K., Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors, Biochem. J. 232, 751–757 (1985).Google Scholar
  47. 47.
    Ehlert, F.J., The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium, Molec. Pharmac. 28, 410–421 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • T. Haga
    • 1
  • G. Berstein
    • 1
  • T. Nishiyama
    • 2
  • H. Uchiyama
    • 1
  • K. Ohara
    • 1
  • K. Haga
    • 1
  1. 1.Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
  2. 2.Internal MedicineHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations