Skip to main content

Application of Fast Reaction Techniques to Kinetic Measurements of Receptor Function on Cell Surfaces

  • Chapter
Neuroreceptors and Signal Transduction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 236))

  • 62 Accesses

Abstract

Receptor proteins in nerve and muscle cells have attracted much attention recently because of their central role in the transmission of signals between nerve and muscle cells. Kinetic investigations of their function have been hampered because endogenous compounds on binding to the protein not only cause it to form an inorganic ion conducting transmembrane channel, but also induce rapid first-order state transitions from the active protein form to an inactive form with altered abilities to bind ligands. Two new approaches allow kinetic measurements of receptor function to be made on cell surfaces with a time resolution of μs to ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoshima, H., Cash, D.J., and Hess, G.P., Mechanism of inactivation (desensitization) of acetylcholine receptor. Investigations by fast reaction techniques with membrane vesicles, Biochemistry 20: 3467 (1981).

    Article  Google Scholar 

  2. Hess, G.P., Cash, D.J., and Aoshima, H., Acetylcholine receptor-controlled ion fluxes in membrane vesicles investigated by fast reaction techniques, Nature 282: 329 (1979).

    Article  Google Scholar 

  3. Katz, B., and Thesleff, S., A study of the desensitization produced by acetylcholine at the motor endplate, J. Physiol. (London) 138: 63 (1957).

    Google Scholar 

  4. Huganir, R.L., Delcour, A.H., Greengard, P., and Hess, G.P., Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization, Nature 321: 774 (1986).

    Article  Google Scholar 

  5. Tung, M.F. and McNamee, M.G., Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes, Biochemistry 26: 3871 (1986).

    Google Scholar 

  6. Tung, M.F. and McNamee, M.G., Correlation between acetylcholine receptor function and structural properties of membranes, Biochemistry 25: 830 (1986).

    Article  Google Scholar 

  7. Shiono, S., Takeyasu, K., Udgaonkar, J.B., Delcour, A.H., Fujita, N., and Hess, G.P., Regulatory properties of acetylcholine receptor: Evidence for two different inhibitory sites, one for acetylcholine and the other for a noncompetitive inhibitor of receptor function (procaine), Biochemistry 23: 6889 (1984).

    Article  Google Scholar 

  8. Takeyasu, K., Udgaonkar, J.B., and Hess, G.P., Acetylcholine receptor: Evidence for a votage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage clamp, Biochemistry 22: 5973 (1983).

    Article  Google Scholar 

  9. Takeyasu, K., Shiono, S., Udgaonkar, J.B., Fujita, N., and Hess, G.P., Acetylcholine receptor: Characterization of the voltage-dependent regulatory (inhibitory) site for acetylcholine in membrane vesicles from Torpedo californica electroplax, Biochemistry 25: 1770 (1986).

    Article  Google Scholar 

  10. Sachs, A.B., Leprince, P., Karpen, J.W., Pasquale, E.B., Abood, L.G., and Hess, G.P., Phencyclidine inhibition of the acetylcholine receptor: Measurement 052 caiion flux in a sympathetic neuonal cell line using Na and spectroscopic detection of Cs, Arch. Biochem. Biophys. 225: 500 (1983).

    Article  Google Scholar 

  11. Karpen, J.W., Sachs, A.B., Pasquale, E.B., and Hess, G.P., Spectrophotometric detection of monovalent receptor-mediated ion flux in PC-12 cells, Analyt. Biochem. 157: 353 (1986).

    Article  Google Scholar 

  12. Wu, C.-F., Suzuki, N., and Poo, M.M., Dissociated neurons from normal and mutant Drosophila larval central nervous system in cell culture, J. Neurosci. 3: 1888 (1983).

    Google Scholar 

  13. Hess, G.P., Cash, D.J., and Aoshima, H., Acetylcholine receptor-controlled ion translocation: Chemical kinetic investigations of the mechanism, Ann. Rev. Biophys. Bioeng. 12: 443 (1983).

    Google Scholar 

  14. Hess, G.P. and Udgaonkar, J.B., Chemical kinetic measurements of transmembrane processes using rapid reaction techniques: Acetylcholine receptor, Ann. Rev. Biophys. Biophys. Chem. 16: 507 (1987).

    Google Scholar 

  15. Udgaonkar, J.A. and Hess, G.P., Acetylcholine receptor: Channel-opening kinetics evaluated by rapid chemical kinetic and single-channel current measurements, Biophys. J. 52: 873 (1987).

    Article  Google Scholar 

  16. Hamill, O.P., Marty, E., Neher, B., Sakmann, B., and Sigworth, F.J., Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. Eur. J. Physiol. 391: 85 (1981).

    Article  Google Scholar 

  17. Kristal, O.A., and Pidoplichko, V.I., A receptor for protons in the nerve cell membrane, Neuroscience 5: 2325 (1980).

    Article  Google Scholar 

  18. Clapham, D.E., and Neher, E., Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells, J. Physiol. (London) 347: 255 (1984).

    Google Scholar 

  19. Sakmann, B., and Neher, E., Patch clamp techniques for studying ionic channels in excitable membranes, Ann. Rev. Physiol. 46: 455 (1984).

    Article  Google Scholar 

  20. Landau, L.D. and Lefshitz, E.M., Fluid Mechanics ( Pergamon, Oxford ) (1959).

    Google Scholar 

  21. Udgaonkar, J.B. and Hess, G.P., Acetylcholine receptor kinetics: Chemical kinetics, J. Membr. Biol. 93: 93 (1986).

    Article  Google Scholar 

  22. Walker, J.W., McCray, J.A., and Hess, G.P., Photolabile protecting groups for an acetylcholine receptor ligand. Synthesis and photochemistry of a new class of o-nitrobenzyl derivatives and their effects on receptor function, Biochemistry 25: 1799 (1986).

    Google Scholar 

  23. Patchornik, A., Amit, B., and Woodward, R.E., Photosensitive protecting groups, J. Am. Chem. Soc. 92: 6333 (1970).

    Article  Google Scholar 

  24. Kaplan, J.N., Forbush, B., and Hoffman, J.F., Rapid photolytic release of adenosine 5’-triphosphate from a protected analogue: Utilization by the Na:K pump of human red blood cell ghosts, Biochemistry 17: 1929 (1978).

    Article  Google Scholar 

  25. McCray, J.A., Herbette, L., Kihara, T., and Trentham, D.R., A new approach to time-resolved studies of ATP-requiring biological systems: Laser flash photolysis of caged ATP, Proc. Natl. Acad. Sci. U.S.A. 77: 7237 (1980).

    Article  Google Scholar 

  26. Nerbonne, J.M., Richard, S., Margeot, J., and Lester, H.A., New photoactivatable cyclic nucleotides produce intracellular jumps in cyclic AMP and cyclic GMP concentrations, Nature (London) 310: 74 (1984).

    Article  Google Scholar 

  27. Lester, H.A., and Nerbonne, J.M., Physiological and pharmacological manipulations with light flashes, Ann. Rev. Biophys. Bioeng. 11: 151 (1982).

    Article  Google Scholar 

  28. Milburn, T., Matsubara, N., Billington, A.P., McCray, J.A., Carpenter, B., and Hess, G.P. (Manuscript in preparation).

    Google Scholar 

  29. Wilcox, M., Billington, A.P., McCray, A.P., Carpenter, B., and Hess, G.P. (Manuscript in preparation).

    Google Scholar 

  30. Udgaonkar, J.B., and Hess, G.P., Chemical kinetic measurements of a mammalian acetylcholine receptor by a fast-reaction technique, Proc. Natl. Acad. Sci. U.S.A. 84: 000.

    Google Scholar 

  31. Sumikawa, K., Houghton, M., Emtage, J.S., Richards, B.M. and Barnard, E.A., Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes, Nature 292: 1 (1981).

    Article  Google Scholar 

  32. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K-i., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S., Location of functional regions of acetylcholine receptor a-subunit by site-directed mutagenesis, Nature 313: 364 (1985).

    Article  Google Scholar 

  33. Fujita, N., Nelson, N., Fox, T.D., Claudio, T., Lindstrom, J., Riezman, H., and Hess, G.P., Biosynthesis of the Torpedo californica acetylcholine receptor a subunit in yeast, Science 231: 1284 (1986).

    Article  Google Scholar 

  34. Fujita, N., Sweet, M.T., Fox, T.D., Nelson, N., Claudio, T., Lindstrom, J.M., and Hess, G.P., Expression of cDNAs for acetylcholine receptor subunits in the yeast cell plasma membrane, Biochem. Soc. Symp. 52: 41 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsubara, N., Hess, G.P. (1988). Application of Fast Reaction Techniques to Kinetic Measurements of Receptor Function on Cell Surfaces. In: Kito, S., Segawa, T., Kuriyama, K., Tohyama, M., Olsen, R.W. (eds) Neuroreceptors and Signal Transduction. Advances in Experimental Medicine and Biology, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5971-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5971-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5973-0

  • Online ISBN: 978-1-4757-5971-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics