Advertisement

Axonal Transport and Intracellular Sorting of Glycoconjugates

  • Jeffry F. Goodrum
  • George C. Stone
  • Pierre Morell

Abstract

The movement of material along axons was first described in the now classic studies of Weiss and Hiscoe (1948). These investigators observed that when a ligature was placed on a nerve, axonal material accumulated proximal to the tie, resulting in a swelling of the nerve. Following removal of the ligature the swollen region was displaced down the nerve at 1–2 mm/day. Various adaptations of this technique, combined with the application of radioisotope methodology introduced to the field in the early 1960s, have led to the elucidation of a complex system of intracellular traffic within axons. While a full understanding of the mechanisms of axonal transport remains to be achieved, much has been learned as summarized below.

Keywords

Sciatic Nerve Optic System Axonal Transport Retrograde Transport Metabolic Turnover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambron, R. T., and Treistman, S. N., 1977, Glycoproteins are modified in the axon of R2, the giant neuron of Aplysia californica, after intra-axonal injection of [3H]N-acetylgalactosamine, Brain Res. 121: 287–309.PubMedCrossRefGoogle Scholar
  2. Ambron, R. T., Goldman, J. E., and Schwartz, J. H., 1974a, Axonal transport of newly synthesized glycoproteins in a single identified neuron of Aplysia californica, J. Cell Biol. 61: 665–675.PubMedCrossRefGoogle Scholar
  3. Ambron, R. T., Goldman, J. E., Thompson, E. B., and Schwartz, J. H., 1974b, Synthesis of glycoproteins in a single identified neuron of Aplysia californica, J. Cell Biol. 61: 649–664.PubMedCrossRefGoogle Scholar
  4. Ambron, R. T., Goldman, J. E., and Schwartz, J. H., 1975, Effect of inhibiting protein synthesis on axonal transport of membrane glycoproteins in an identified neuron of Aplysia, Brain Res. 94: 307–323.PubMedCrossRefGoogle Scholar
  5. Ambron, R. T., Goldman, J. E., Shkolnik, L. J., and Schwartz, J. H., 1980, Synthesis and axonal transport of membrane glycoproteins in an identified serotonergic neuron of Aplysia, J. Neurophysiol. 43: 929–944.PubMedGoogle Scholar
  6. Ambron, R. T., Sherbany, A. A., and Schwartz, J. H., 1981a, Distribution of membrane glycoproteins among the organelles of a single identified neuron of Aplysia. II. Isolation and characterization of a glycoprotein associated with vesicles, Brain Res. 207: 33–48.PubMedCrossRefGoogle Scholar
  7. Ambron, R. T., Sherbany, A. A., Shkolnik, L. J., and Schwartz, J. H., 1981p, Distribution of membrane glycoproteins among the organelles of a single identified neuron of Aplysia. I. Association of a [3H]glycoprotein with vesicles, Brain Res. 207: 17–32.PubMedCrossRefGoogle Scholar
  8. Aquino, D. A., Bisby, M. A., and Ledeen, R. W., 1985, Retrograde axonal transport of gangliosides and glycoproteins in the motoneurons of rat sciatic nerve, J. Neurochem. 45; 1262–1267.PubMedCrossRefGoogle Scholar
  9. Aquino, D. A., Bisby, M. A., and Ledeen, R. W., 1987, Bidirectional transport of gangliosides, glycopro-teins and neutral glycosphingolipids in the sensory neurons of rat sciatic nerve, Neuroscience 20: 1023–1029.PubMedCrossRefGoogle Scholar
  10. Audigier, Y., Friedlander, M., and Blobel, G., 1987, Multiple topogenic sequences in bovine opsin, Proc. Natl. Acad. Sci. USA 84: 5783–5787.PubMedCrossRefGoogle Scholar
  11. Autilio-Gambetti, L., Gambetti, P., and Shafer, B., 1975, Glial and neuronal contribution to proteins and glycoproteins recovered in myelin fractions, Brain Res. 84: 336–340.PubMedCrossRefGoogle Scholar
  12. Barondes, S. H., 1968, Incorporation of radioactive glucosamine into macromolecules at nerve endings, J. Neurochem. 15: 699–706.PubMedCrossRefGoogle Scholar
  13. Barondes, S. H., and Dutton, G. R., 1969, Acetoxycyclohexamide effect on synthesis and metabolism of glucosamine-containing macromolecules in brain and in nerve endings, J. Neurobiol. 1: 99–110.PubMedCrossRefGoogle Scholar
  14. Beiger, W., Seybold, J., and Kern, H. F., 1975, Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. III. Effect of cobalt, lanthanum, and antimycin A, Virchows Arch. A 368: 329–345.Google Scholar
  15. Bennett, G., Di Giamberadino, L., Koenig, H. L., and Droz, B., 1973, Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of [3H]fucose and [3H]glucosamine, Brain Res. 60: 129–146.PubMedCrossRefGoogle Scholar
  16. Berry, R. W., 1980, Evidence for multiple somatic pools of individual axonally transported proteins, J. Cell Biol. 87: 379–385.PubMedCrossRefGoogle Scholar
  17. Bisby, M. A., 1976, Orthograde and retrograde axonal transport of labeled protein in motoneurons, Exp. Neurol. 50: 628–640.PubMedCrossRefGoogle Scholar
  18. Bisby, M. A., 1978, Fast axonal transport of labeled protein in sensory axons during regeneration, Exp. Neurol. 61: 281–300.PubMedCrossRefGoogle Scholar
  19. Bisby, M. A., 1980, Retrograde axonal transport, in: Advances in Cellular Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 69–117, Academic Press, New York.Google Scholar
  20. Blaker, W. D., Goodrum, J. F., and Morell, P., 1981, Axonal transport of the mitochondria-specific lipid, diphosphatidylglycerol, in the rat visual system, J. Cell Biol. 89: 579–584.PubMedCrossRefGoogle Scholar
  21. Bondy, S. C., and Madsen, C. J., 1971, Development of rapid axonal flow in the chick embryo, J. Neurobiol. 2: 279–286.PubMedCrossRefGoogle Scholar
  22. Bondy, S. C., and Madsen, C. J., 1974, The extent of axoplasmic transport during development, determined by migration of various radioactively-labeled materials, J. Neurochem. 23: 905–910.PubMedCrossRefGoogle Scholar
  23. Bosmann, H. B., 1972, Synthesis of glycoproteins in brain. Identification, purification, and properties of glycosyltransferases from purified synaptosomes of guinea pig cerebral cortex, J. Neurochem. 19: 763–778.PubMedCrossRefGoogle Scholar
  24. Bosmann, H. B., and Hemsworth, B. A., 1970a, Incorporation of amino acids and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria, J. Biol. Chem. 245: 363–371.PubMedGoogle Scholar
  25. Bosmann, H. B., and Hemsworth, B. A., 1970b, Intraneural glycosidases. I. Glycosidase, ß-glucuronidase and acid phosphatase activity in rat and guinea pig cerebral cortical synaptosomes, Physiol. Chem. Phys. 2: 249–262.Google Scholar
  26. Brandt, A. E., Distler, J. J., and Jourdian, G. W., 1975, Biosynthesis of chondroitin sulfate proteoglycan: Subcellular distribution of glycosyl transferases in embryonic chick brain, J. Biol. Chem. 250: 3996–4006.PubMedGoogle Scholar
  27. Brown, W. J., and Farquhar, M. G., 1984, The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae, Cell 36: 295–307.PubMedCrossRefGoogle Scholar
  28. Caroni, P., Carlson, S. S., Schweitzer, E., and Kelly, R. B., 1985, Presynaptic neurons may contribute a unique glycoprotein to the extracellular matrix at the synapse, Nature 314: 441–443.PubMedCrossRefGoogle Scholar
  29. Casagrande, V. A., and Harting, J. K., 1975, Transneuronal transport of tritiated fucose and proline in the visual pathways of tree shrew Tupaia glis, Brain Res. 96: 367–372.PubMedCrossRefGoogle Scholar
  30. Chan, J. Y., Nwokoro, N. A., and Schachter, H., 1979, L-fucose metabolism in mammals, J. Biol. Chem. 254: 7060–7068.PubMedGoogle Scholar
  31. Chou, K. H., Nolan, C. E., and Jungalwala, F. B., 1985, Subcellular fractionation of rat sciatic nerve and specific localization of ganglioside LM1 in rat nerve myelin, J. Neurochem. 44: 1898–1912.PubMedCrossRefGoogle Scholar
  32. Cole, G. J., and Elam, J. S., 1981, Axonal transport of glycoproteins in regenerating olfactory nerve: Enhanced glycopeptide concanavalin A-binding, Brain Res. 222: 437–441.PubMedCrossRefGoogle Scholar
  33. Cole, G. J., and Elam, J. S., 1983, Characterization of axonally transported glycoproteins in regenerating garfish olfactory nerve, J. Neurochem. 41: 691–702.PubMedCrossRefGoogle Scholar
  34. Crossland, W. J., 1985, Fast axonal transport in the visual pathway of the chick and rat, Brain Res. 340: 373–377.PubMedCrossRefGoogle Scholar
  35. Den, H., Kaufman, B., McGuire, E. J., and Roseman, S., 1975, The sialic acids. XVIII. Subcellular distribution of seven glycosyltransferases in embryonic chicken brain, J. Biol. Chem. 250: 739–746.PubMedGoogle Scholar
  36. Di Giamberadino, L., Bennett, G., Koenig, H., and Droz, B., 1973, Axonal migration of protein and glycoprotein to nerve endings. III. Cell fraction analysis of chicken ciliary ganglion after intracerebral injection of labeled precursors of proteins and glycoproteins, Brain Res. 60: 147–159.CrossRefGoogle Scholar
  37. Douglas, W. W., 1974, Involvement of calcium in exocytosis and the exocytosis vesiculation sequence, in: Calcium and Cell Regulation ( R. M. S. Smellie, ed.), pp. 1–28, Biochemical Society, London.Google Scholar
  38. Drager, U. C., 1974, Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice, Brain Res. 82: 284–292.PubMedCrossRefGoogle Scholar
  39. Dutton, G. R., Haywood, P., and Barondes, S. H., 1973, 14C glucosamine incorporation into specific products in the nerve ending fraction in vivo and in vitro, Brain Res. 57: 397–408.Google Scholar
  40. Edstrom, A., and Mattsson, H., 1972, Rapid axonal transport in vitro in the sciatic system of the frog of fucose-, glucosamine-and sulphate-containing material, J. Neurochem. 19: 1717–1729.PubMedCrossRefGoogle Scholar
  41. Edstrom, A., and Mattsson, H., 1973, Electrophoretic characterization of leucine-, glucosamine-and fucose-labeled proteins rapidly transported in frog sciatic nerve, J. Neurochem. 21: 1499–1507.PubMedCrossRefGoogle Scholar
  42. Elam, J. S., 1982, Composition and subcellular distribution of glycoproteins and glycosaminoglycans undergoing axonal transport in garfish olfactory nerves, J. Neurochem. 39: 1220–1229.PubMedCrossRefGoogle Scholar
  43. Elam, J. S., and Agranoff, B. W., 1971a, Rapid transport of protein in the optic system of the goldfish, J. Neurochem. 18: 375–387.PubMedCrossRefGoogle Scholar
  44. Elam, J. S., and Agranoff, B. W., 1971b, Transport of proteins and sulfated mucopolysaccharides in the goldfish visual system, J. Neurobiol. 2: 379–390.PubMedCrossRefGoogle Scholar
  45. Elam, J. S., and Cancalon, P., 1984, Axonal Transport in Neuronal Growth and Regeneration, Plenum Press, New York.CrossRefGoogle Scholar
  46. Elam, J. S., and Peterson, N. W., 1976, Axonal transport of sulfated glycoproteins and mucopolysaccharides in the garfish olfactory nerve, J. Neurochem. 26: 845–850.PubMedCrossRefGoogle Scholar
  47. Elam, J. S., and Peterson, N. W., 1979, Axonal transport of glycoproteins in the garfish olfactory nerve: Isolation of high molecular weight glycopeptides labeled with [3H]fucose and [3H]glucosamine, J. Neurochem. 33: 571–573.PubMedCrossRefGoogle Scholar
  48. Elam, J. S., Goldberg, J. M., Radin, N. S., and Agranoff, B. W., 1970, Rapid axonal transport of sulfated mucopolysaccharide proteins, Science 170: 458–460.PubMedCrossRefGoogle Scholar
  49. Festoff, B. W., Appel, S. H., and Day, E., 1971, Incorporation of 14C glucosamine into synaptosomes in vitro, J. Neurochem. 18: 1871–1886.PubMedCrossRefGoogle Scholar
  50. Forman, D. S., and Ledeen, R. W., 1972, Axonal transport of gangliosides in the goldfish optic nerve, Science 177: 630–633.PubMedCrossRefGoogle Scholar
  51. Forman, D. S., McEwen, B. S., and Grafstein, B., 1971, Rapid transport of radioactivity in goldfish optic nerve following injections of labeled glucosamine, Brain Res. 28: 119–130.PubMedCrossRefGoogle Scholar
  52. Forman, D. S., Grafstein, B., and McEwen, B. S., 1972, Rapid axonal transport of [3H]fucosyl glycoproteins in the goldfish optic system, Brain Res. 48: 327–342.PubMedCrossRefGoogle Scholar
  53. Friedlander, M., and Blobel, G., 1985, Bovine opsin has more than one signal sequence, Nature 318: 338–343.PubMedCrossRefGoogle Scholar
  54. Frizell, M., and Sjostrand, J., 1974a, The axonal transport of [3H]fucose labeled glycoproteins in normal and regenerating peripheral nerves, Brain Res. 78: 109–123.PubMedCrossRefGoogle Scholar
  55. Frizell, M., and Sjostrand, J., 1974b, Transport of proteins, glycoproteins and cholinergic enzymes in regenerating hypoglossal neurons, J. Neurochem. 22: 845–850.PubMedCrossRefGoogle Scholar
  56. Frizell, M., McLean, W. G., and Sjostrand, J., 1976, Retrograde axonal transport of rapidly migrating labeled proteins and glycoproteins in regenerating peripheral nerves, J. Neurochem. 27: 191–196.PubMedCrossRefGoogle Scholar
  57. Gammon, C. M., Goodrum, J. F., Toews, A. D., Okabe, A., and Morell, P., 1985, Axonal transport of glycoconjugates in the rat visual system, J. Neurochem. 44: 376–387.PubMedCrossRefGoogle Scholar
  58. Goldberg, D. J., and Ambron, R. T., 1981, Two rates of fast axonal transport of [3H]glycoprotein in an identified invertebrate neuron, Brain Res. 229: 445–455.PubMedCrossRefGoogle Scholar
  59. Goodrum, J. F., and Morell, P., 1982, Axonal transport, deposition and metabolic turnover of glycoproteins in the rat optic pathway, J. Neurochem. 38: 696–704.PubMedCrossRefGoogle Scholar
  60. Goodrum, J. F., and Morell, P., 1984, Analysis of the apparent biphasic axonal transport kinetics of fucosylated glycoproteins, J. Neurosci. 4: 1830–1839.PubMedGoogle Scholar
  61. Goodrum, J. F., Bosmann, H. B., and Tanaka, R., 1979a, Glycoprotein galactosyltransferase activity in synaptic junctional complexes isolated from rat forebrain, Neurochem. Res. 4: 331–337.PubMedCrossRefGoogle Scholar
  62. Goodrum, J. F., Toews, A. D., and Morell, P., 1979b, Axonal transport and metabolism of [3H]-fucose-and [35S]sulfate-labeled macromolecules in the rat visual system, Brain Res. 176: 255–272.PubMedCrossRefGoogle Scholar
  63. Grafstein, B., and Forman, D. S., 1980, Intracellular transport in neurons, Physiol. Rev. 60: 1167–1283.PubMedGoogle Scholar
  64. Gremo, F., and Marchisio, P. C., 1975, Dynamic properties of axonal transport of proteins and glycoproteins: A study based on the effects of metaphase blocking drugs in the developing optic pathway of chick embryos, Cell Tissue Res. 161: 303–316.PubMedCrossRefGoogle Scholar
  65. Gremo, F., Sjostrand, J., and Marchisio, P. C., 1974, Radioautographic analysis of 3H-fucose labeled glycoproteins transported along the optic pathway of chick embryos, Cell Tissue Res. 153: 465–476.PubMedCrossRefGoogle Scholar
  66. Griffin, J. W., Price, D. L., Drachman, D. B., and Morris, J., 1981, Incorporation of axonally transported glycoproteins into axolenuna during nerve regeneration, J. Cell Biol. 88: 205–214.PubMedCrossRefGoogle Scholar
  67. Gross, G. W., 1973, The effect of temperature on the rapid axoplasmic transport in C-fibers, Brain Res. 56: 359–363.PubMedCrossRefGoogle Scholar
  68. Gross, G. W., and Beidler, L. M., 1975, A quantitative analysis of isotope concentration and rapid transport velocities in the C-fibers of the garfish olfactory nerve, J. Neurobiol. 6: 213–232.PubMedCrossRefGoogle Scholar
  69. Gross, G. W., and Kreutzberg, G. W., 1978, Rapid axoplasmic transport in the olfactory nerve of the pike. I. Basic transport parameters for proteins and amino acids, Brain Res. 139: 65–76.PubMedCrossRefGoogle Scholar
  70. Gumbiner, B., and Kelly, R. B., 1982, Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells, Cell 28: 51–59.PubMedCrossRefGoogle Scholar
  71. Gustaysson, S., Ohlson, C., and Karlsson, J. O., 1982, Glycoproteins of axonal transport: Affinity chromatography on fucose-specific lectins, J. Neurochem. 38: 852–855.CrossRefGoogle Scholar
  72. Hammerschlag, R., and Stone, G. C., 1982, Membrane delivery by fast axonal transport, Trends Neurosci. 5: 12–15.CrossRefGoogle Scholar
  73. Hammerschlag, R., and Stone, G. C., 1986, Prelude to fast axonal transport: Sequence of events in the cell body, in: Axoplasmic Transport ( Z. Iqbal, ed.), pp. 21–34, CRC Press, Boca Raton, Fla.Google Scholar
  74. Hammerschlag, R., and Stone, G. C., 1987, Further studies on the initiation of fast axonal transport, in: Axonal Transport ( R. S. Smith and M. A. Bisby, eds.), pp. 37–51, Liss, New York.Google Scholar
  75. Hammerschlag, R., Stone, G. C., Bolen, F. A., Lindsey, J. D., and Ellisman, M. H., 1982, Evidence that all newly synthesized proteins destined for fast axonal transport pass through the Golgi apparatus, J. Cell Biol. 93: 568–575.PubMedCrossRefGoogle Scholar
  76. Hanson, M., and Edstrom, A., 1978, Mitosis inhibitors and axonal transport, Int. Rev. Cytol. Suppl. 7: 373–402.PubMedGoogle Scholar
  77. Harry, G. J., Goodrum, J. F., Toews, A. D., and Morell, P., 1987, Axonal transport characteristics of gangliosides in sensory axons of rat sciatic nerve, J. Neurochem. 48: 1529–1536.PubMedCrossRefGoogle Scholar
  78. Hart, C. E., and Wood, J. G., 1986, Analysis of the carbohydrate composition of axonally transported glycoconjugates in sciatic nerve, J. Neurosci. 6: 1365–1371.PubMedGoogle Scholar
  79. Held, I., and Young, I. J., 1972, Transport of radioactivity derived from labeled N-acetylglucosamine in mammalian motor axons, J. Neurobiol. 3: 153–161.PubMedCrossRefGoogle Scholar
  80. Hendrickson, A. E., and Cowan, W. M., 1971, Changes in the rate of axoplasmic transport during postnatal development of the rabbit’s optic nerve and tract, Exp. Neurol. 30: 403–422.PubMedCrossRefGoogle Scholar
  81. Igarashi, M., Komiya, Y., and Kurokawa, M., 1985, CMP-sialic acid, the sole sialosyl donor, is intraaxonally transported, FEBS Lett. 192: 239–242.PubMedCrossRefGoogle Scholar
  82. Igarashi, M., Komiya, Y., and Kurokawa, M., 1986, A ganglioside species (GD1a) migrates at a slow rate and CMP-sialic acid several fold faster in Xenopus sciatic nerve: Fluorographic demonstration, J. Neurochem. 47: 1720–1727.PubMedCrossRefGoogle Scholar
  83. Karlsson, J. O., 1979, Proteins of axonal transport: Interaction of rapidly transported proteins with lectins, J. Neurochem. 32: 491–494.PubMedCrossRefGoogle Scholar
  84. Karlsson, J. O., 1980, Proteins of rapid axonal transport: Polypeptides interacting with the lectin from Lens culinaris, J. Neurochem. 34: 1184–1190.PubMedCrossRefGoogle Scholar
  85. Karlsson, J. O., and Linde, A., 1977, Axonal transport of [35S]sulphate in retinal ganglion cells of the rabbit, J. Neurochem. 28: 293–297.CrossRefGoogle Scholar
  86. Karlsson, J. O., and Sjostrand, J., 1971, Rapid intracellular transport of fucose-containing glycoproteins in retinal ganglion cells, J. Neurochem. 18: 2209–2216.PubMedCrossRefGoogle Scholar
  87. Kern, H. F., and Kern, D., 1969, Electronenmikroskopische untersuchungen uber die wirkung von kobaltchlorid auf das exokrine pankreasgewebe des meerschweinchens, Virchows Arch. Abt. B Zellpath. 4: 54–70.Google Scholar
  88. Koro, L. A., and Marchase, R. B., 1982, A UDP-glucose: glycoprotein glucose-1-phosphotransferase in embryonic chicken neural retina, Cell 31: 739–748.PubMedCrossRefGoogle Scholar
  89. Landa, C. A., Maccioni, H. J. F., and Caputto, R., 1979, The site of synthesis of gangliosides in the chick optic system, J. Neurochem. 33: 825–838.PubMedCrossRefGoogle Scholar
  90. Lasek, R. J., 1981, Cytoskeletons and cell motility in the nervous system, in: Basic Neurochemistry ( G. J. Seigel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), Little, Brown, Boston.Google Scholar
  91. Ledeen, R. W., Skrivanek, J. A., Tim, L. J., Margolis, R. K., and Margolis, R. U., 1976, Gangliosides of the neuron: Localization and origin, Adv. Exp. Med. Biol. 71: 83–103.PubMedGoogle Scholar
  92. Ledeen, R. W., Skrivanek, J. A., Nunez, J., Sclafani, J. R., Norton, W. T., and Farooq, M., 1981, Implications of the distribution and transport of gangliosides in the nervous system, in: Gangliosides in Neurological and Neuromuscular Function ( M. M. Rapport and A. Gorio, eds.), pp. 211–223, Raven Press, New York.Google Scholar
  93. Levin, B. E., 1977, Axonal transport of [3H]fucosyl glycoproteins in noradrenergic neurons in the rat brain, Brain Res. 130: 421–432.PubMedCrossRefGoogle Scholar
  94. Lindsey, J. D., and Ellisman, M. H., 1983, The varicose tubule: A direct connection between rough endoplasmic reticulum and the Golgi apparatus, J. Cell Biol. 97: 304a.Google Scholar
  95. Maccioni, H. J., Landa, C., Arce, A., and Caputto, R., 1977, The biosynthesis of brain gangliosidesevidence for a “transient pool” and an “end product pool” of gangliosides, Adv. Exp. Med. Biol. 83: 267–281.PubMedCrossRefGoogle Scholar
  96. Marchase, R. B., Koro, L. A., Kelly, C. M., and McClay, D. R., 1982, Retinal ligatin recognizes glycoproteins bearing oligosaccharides terminating in phosphodiester-linked glucose, Cell 28: 813–820.Google Scholar
  97. Marchisio, P. C., Sjostrand, J., Aglietta, M., and Karlsson, J. 0., 1973, The development of axonal transport of proteins and glycoproteins in the optic pathway of chick embryos, Brain Res. 63: 273–284.Google Scholar
  98. Marchisio, P. C., Gremo, F., and Sjostrand, J., 1975, Axonal transport in embryonic neurons. The possibility of a proximo-distal axolemmal transfer of glycoproteins, Brain Res. 85: 281–285.PubMedCrossRefGoogle Scholar
  99. Margolis, R. K., and Margolis, R. U., 1972, Disposition of fucose in brain, J. Neurochem. 19: 1023–1030.PubMedCrossRefGoogle Scholar
  100. Margolis, R. U., and Margolis, R. K., 1979, Perspectives and functional implications, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 377–386, Plenum Press, New York.CrossRefGoogle Scholar
  101. Margolis, R. K., Margolis, R. U., Preti, C., and Lai, D., 1975, Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions of brain, Biochemistry 14: 4797–4804.PubMedCrossRefGoogle Scholar
  102. Marko, P., and Cuenod, M., 1973, Contribution of the nerve cell body to renewal of axonal and synaptic glycoproteins in the pigeon visual system, Brain Res. 62: 419–423.PubMedCrossRefGoogle Scholar
  103. Markov, D., Rambourg, A., and Droz, B., 1976, Smooth endoplasmic reticulum and fast axonal transport of glycoproteins, an electron microscopic radioautographic study of thick sections after heavy metals impregnation, J. Microsc. Biol. Cell. 25: 57–60.Google Scholar
  104. Matthews, M. A., Narayanan, C. H., and Siegenthaler-Matthews, D. J., 1982a, Inhibition of axoplasmic transport in the developing visual system of the rat. III. Electron microscopy and Golgi studies of retino-fugal synapses and post-synaptic neurons in the dorsal lateral geniculate nucleus, Neuroscience 7: 405–422.PubMedCrossRefGoogle Scholar
  105. Matthews, M. A., West, L. C., and Clarkson, D. B., 1982b, Inhibition of axoplasmic transport in the developing visual system of the rat. II. Quantitative analysis of alterations in transport of tritiated proline or fucose, Neuroscience 7: 385–404.PubMedCrossRefGoogle Scholar
  106. Matthieu, J. M., Webster, H. d., DeVries, G. H., Corthay, S., and Koellreutter, B., 1978, Glial versus neuronal origin of myelin proteins and glycoproteins studied by combined intraocular and intracranial labeling, J. Neurochem. 31: 93–102.PubMedCrossRefGoogle Scholar
  107. McEwen, B. S., Forman, D. S., and Grafstein, B., 1971, Components of fast and slow axonal transport in the goldfish optic nerve, J. Neurobiol. 2: 361–377.PubMedCrossRefGoogle Scholar
  108. McLean, W. G., Frizell, M., and Sjostrand, J., 1975, Axonal transport of labeled proteins in sensory fibres of rabbit vagus nerve in vitro, J. Neurochem. 25: 695–698.PubMedCrossRefGoogle Scholar
  109. Monticone, R. E., and Elam, J. S., 1975, Isolation of axonally transported glycoproteins with goldfish visual system myelin, Brain Res. 100: 61–71.PubMedCrossRefGoogle Scholar
  110. Morre, D. J., Keenan, T. W., and Huang, C. M., 1974, Membrane flow and differentiation: Origin of Golgi apparatus membranes from endoplasmic reticulum, Adv. Cytopharmacol. 2: 107–125.PubMedGoogle Scholar
  111. Neufeld, E. F., and McKusick, V. A., 1983, Disorders of lysosomal enzyme synthesis and localization. I. Cell disease and pseudo-Hurler polydystrophy, in: The Metabolic Basis of Disease, 5th ed. ( J. B. Stanbury, J. B. Wyngaarden, D. S. Frederickson, M. S. Goldstein, and J. L. Brown, eds.), pp. 778–787, McGraw—Hill, New York.Google Scholar
  112. Nichols, T. R., Smith, R. S., and Snyder, R. E., 1982, The action of puromycin and cyclohexamide on the initiation and rapid axonal transport on amphibian dorsal root neurons, J. Physiol. (London) 332: 441–458.Google Scholar
  113. Ochs, S., 1973, Effects of maturation and aging on the rate of fast axoplasmic transport in mammalian nerve, Prog. Brain Res. 40: 349–362.PubMedCrossRefGoogle Scholar
  114. Ochs, S., 1982, Axoplasmic Transport and Its Relation to Other Nerve Functions, Wiley, New York. Ohlson, C., and Karlsson, J. O., 1983a, Glycoproteins of axonal transport. Interaction with heparin, Brain Res. 274: 303–308.Google Scholar
  115. Ohlson, C., and Karlsson, J. O., 1983b, Glycoproteins of axonal transport: Polypeptides interacting with the lectin from Aleuria aurantia, Brain Res. 264: 99–104.PubMedCrossRefGoogle Scholar
  116. Olden, K., Parent, J. B., and White, S. L., 1982, Carbohydrate moieties of glycoproteins. A reevaluation of their function, Biochim. Biophys. Acta 650: 209–232.PubMedCrossRefGoogle Scholar
  117. Olden, K., Bernard, B. A., Humphries, M. J., Yeo, T., Yeo, K., White, S. L., Newton, S. A., Bauer, H. C., and Parent, J. B., 1985, Function of glycoprotein glycans, Trends Biochem. Sci. 10: 78–82.CrossRefGoogle Scholar
  118. Padilla, S. S., and Morell, P., 1980, Axonal transport of [3H]fucose-labeled glycoproteins in two intra-brain tracts of the rat, J. Neurochem. 35: 444–450.PubMedCrossRefGoogle Scholar
  119. Palade, G. E., 1983, Membrane biogenesis: An overview, in: Methods in Enzymology (S. Fleischer, and B. Fleischer, eds.), pp. xxix—xl, Academic Press, New York.Google Scholar
  120. Panzetta, P., Chiarenza, A. P., and Maccioni, H. J. F., 1983, Axonal transport of gangliosides in the visual system of the developing chick embryo, Int. J. Dev. Neurosci. 1: 149–153.Google Scholar
  121. Raghupathy, E., Ko, G. K. W., and Peterson, N. A., 1972, Glycoprotein biosynthesis in the developing rat brain. III. Are glycoprotein glycosyltransferases present in synaptosomes? Biochim. Biophys. Acta 286: 339–349.CrossRefGoogle Scholar
  122. Ripellino, J. A., and Elam, J. S., 1980, Differential turnover of axonally transported glycoproteins, Neurochem. Res. 5: 351–360.PubMedCrossRefGoogle Scholar
  123. Roger, L. J., Breese, G. R., and Morell, P., 1980, Axonal transport of proteins and glycoproteins in the rat nigro-striatal pathway and the effects of 6-hydroxydopamine, Brain Res. 197: 95–112.PubMedCrossRefGoogle Scholar
  124. Rosner, H., 1975, Incorporation of sialic acid into gangliosides and glycoproteins of the optic pathway following an intraocular injection of [N-3H]acetylmannosamine in the chicken, Brain Res. 97: 107–116.PubMedCrossRefGoogle Scholar
  125. Rosner, H., and Merz, G., 1982, Uniform distribution and similar turnover rates of individual gangliosides along axons of retinal ganglion cells in the chicken, Brain Res. 236: 63–75.PubMedCrossRefGoogle Scholar
  126. Rosner, H., Weigandt, H., and Rahmann, H., 1973, Sialic acid incorporation into gangliosides and glycoproteins of the fish brain, J. Neurochem. 21: 655–665.PubMedCrossRefGoogle Scholar
  127. Sabatini, D. D., Kreibich, G., Morimoto, T., and Adesnik, M., 1982, Mechanisms for the incorporation of proteins in membranes and organelles, J. Cell Biol. 92: 1–22.PubMedCrossRefGoogle Scholar
  128. Salton, S. R. J., Margolis, R. U., and Margolis, R. K., 1983, Release of chromaffin granule glycoproteins and proteoglycans from potassium-stimulated PC 12 pheochromocytoma cells, J. Neurochem. 41: 1165–1170.PubMedCrossRefGoogle Scholar
  129. Sbaschnig-Agler, M., Ledeen, R. W., Grafstein, B., and Alpert, R. M., 1984, Ganglioside changes in the regenerating goldfish optic system: Comparison with glycoproteins and phospholipids, J. Neurosci. Res. 12: 221–232.PubMedCrossRefGoogle Scholar
  130. Schengrund, C. L., and Rosenberg, A., 1970, Intracellular location and properties of bovine bran sialidase, J. Biol. Chem. 245: 6196–6200.PubMedGoogle Scholar
  131. Schnapp, B. J., and Reese, T. S., 1986, New developments in understanding rapid axonal transport, Trends Neurosci. 9: 155–162.CrossRefGoogle Scholar
  132. Schwab, M. E., and Thoenen, H., 1983, Retrograde axonal trans, ort, in: Metabolic Turnover in the Nervous System, Handbook of Neurochemistry, 2nd ed. (A. Lajtha, ed.), pp. 381–404, Plenum Press, New York.Google Scholar
  133. Skene, J. H. P., and Willard, M., 1981a, Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells, J. Cell Biol. 89: 86–95.PubMedCrossRefGoogle Scholar
  134. Skene, J. H. P., and Willard, M., 1981b, Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems, J. Cell Biol. 89: 96–103.PubMedCrossRefGoogle Scholar
  135. Skene, J. H. P., and Willard, M., 1981c, Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons, J. Neurosci. 1: 419–426.PubMedGoogle Scholar
  136. Sly, W. S., Natowicz, M., Gonzalez-Noriega, A., Grubb, J. H., and Fischer, H. D., 1981, The role of mannose-6-phosphate recognition marker and its receptor in the uptake and intracellular transport of lysosomal enzymes, in: Lysosomes and Lysosomal Storage Disease (J. W. Callahan and J. A. Lowden, eds.), pp. 131–146, Raven Press, New York.Google Scholar
  137. Smith, R. S., and Bisby, M. A. (eds.), 1987, Axonal Transport, Liss, New York.Google Scholar
  138. Specht, S. C., 1977, Axonal transport in the optic system of neonatal and adult hamsters, Exp. Neurol. 56: 252–264.PubMedCrossRefGoogle Scholar
  139. Specht, S. C., 1982, Postnatal changes in [3H]fucosyl glycopeptides of hamster optic nerve synaptosomal membranes, Dev. Brain Res. 4: 109–114.CrossRefGoogle Scholar
  140. Specht, S. C., and Grafstein, B., 1973, Accumulation of radioactive protein in mouse cerebral cortex after injection of 3H-fucose into the eye, Exp. Neurol. 41: 705–722.PubMedCrossRefGoogle Scholar
  141. Specht, S. C., and Grafstein, B., 1977, Axonal transport and transneuronal transfer in mouse visual system following injection of [3H]fucose into the eye, Exp. Neurol. 54: 352–368.PubMedCrossRefGoogle Scholar
  142. Stone, G. C., and Hammerschlag, R., 1981, Differential effects of cobalt on the initiation of fast axonal transport, Cell Mol. Neurobiol. 1: 3–17.PubMedCrossRefGoogle Scholar
  143. Stone, G. C., and Hammerschlag, R., 1983, Glycosylation as a criterion for defining subpopulations of fast-transported proteins, J. Neurochem. 40: 1124–1133.PubMedCrossRefGoogle Scholar
  144. Stone, G. C., and Hammerschlag, R., 1987, Molecular mechanisms involved in sorting of fast-transported proteins, in: Axonal Transport ( R. S. Smith and M. A. Bisby, eds.), pp. 15–36, Liss, New York.Google Scholar
  145. Stone, G. C., Wilson, D. L., and Hall, M. E., 1978, Two-dimensional gel electrophoresis of proteins in rapid axoplasmic transport, Brain Res. 144: 287–302.PubMedCrossRefGoogle Scholar
  146. Stone, G. C., Hammerschlag, R., and Bobinski, J. A., 1983, Fast-transported glycoproteins and nonglycosylated proteins contain sulfate, J. Neurochem. 41: 1085–1089.PubMedCrossRefGoogle Scholar
  147. Stone, G. C., Hammerschlag, R., and Bobinski, J. A., 1987, Complex compartmentation of tyrosine sulfate-containing proteins undergoing fast axonal transport, J. Neurochem. 48: 1736–1744.PubMedCrossRefGoogle Scholar
  148. Tartakoff, A. M., 1980, Reversible perturbation of the Golgi complex, Cell Biol. Int. Rep. 4: 809.CrossRefGoogle Scholar
  149. Tartakoff, A. M., Hoessli, D., and Vassalli, P., 1980, Golgi participation in intracellular transport of surface glycoproteins, Eur. J. Cell Biol. 22: 173.Google Scholar
  150. Tedeschi, B., and Wilson, D. L., 1987, Subsets of axonally transported and periaxonal polypeptides are released from regenerating nerve, J. Neurochem. 48: 463–469.PubMedCrossRefGoogle Scholar
  151. Teichberg, S., and Holtzman, E., 1973, Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons, J. Cell Biol. 57: 88–108.PubMedCrossRefGoogle Scholar
  152. Thompson, E. B., Schwartz, J. H., and Kandel, E. R., 1976, A radioautographic analysis in the light and electron microscope of identified Aplysia neurons and their processes after intrasomatic injection of L -[3H]fucose, Brain Res. 112: 251–281.PubMedCrossRefGoogle Scholar
  153. Toews, A. D., Saunders, B. F., and Morell, P., 1982, Axonal transport and metabolism of glycoproteins in rat sciatic nerve, J. Neurochem. 39: 1348–1355.PubMedCrossRefGoogle Scholar
  154. Townsend, R. R., Li, Y.-T., and Li, S.-C., 1979, Brain glycosidases, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 127–138, Plenum Press, New York.CrossRefGoogle Scholar
  155. Tytell, M., Gulley, R. L., Wenthold, R. J., and Lasek, R. J., 1980, Fast axonal transport in auditory neurons of the guinea pig: A rapidly turned-over glycoprotein, Proc. Natl. Acad. Sci. USA 77: 3042–3046.PubMedCrossRefGoogle Scholar
  156. Walter, P., Gilmore, R., and Blobel, G., 1985, Protein translocation across the endoplasmic reticulum, Cell 38: 5–8.CrossRefGoogle Scholar
  157. Weiss, P., and Hiscoe, H. B., 1948, Experiments on the mechanism of nerve growth, J. Exp. Zool. 107: 315–395.PubMedCrossRefGoogle Scholar
  158. Wenthold, R. J., and McGarvey, M. L., 1982, Different polypeptides are rapidly transported in auditory and optic neurons, J. Neurochem. 39: 27–35.PubMedCrossRefGoogle Scholar
  159. Whitnall, M. H., Currie, J. R., and Grafstein, B., 1982, Bidirectional axonal transport of glycoproteins in goldfish optic nerve, Exp. Neurol. 75: 191–207.PubMedCrossRefGoogle Scholar
  160. Williams, D. V., Swiedler, S. J., and Hart, G. W., 1985, Intracellular transport of membrane glycoproteins: Two closely related histocompatibility antigens differ in their rates of transit to the cell surface, J. Cell Biol. 101: 725–734.PubMedCrossRefGoogle Scholar
  161. Yeo, K., Parent, J. B., Yeo, T., and Olden, K., 1985a, Variability in transport rates of secretory glycoproteins through the endoplasmic reticulum and Golgi in human hepatoma cells, J. Biol. Chem. 260: 7896–7902.PubMedGoogle Scholar
  162. Yeo, T., Yeo, K., Parent, J. B., and Olden, K., 1985b, Swainsonine treatment accelerates intracellular transport and secretion of glycoproteins in human hepatoma cells, J. Biol. Chem. 260: 2565–2569.PubMedGoogle Scholar
  163. Zatz, M., and Barondes, S. H., 1971, Rapid transport of fucosyl glycoproteins to nerve endings in mouse brain, J. Neurochem. 18: 1125–1133.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jeffry F. Goodrum
    • 1
  • George C. Stone
    • 2
  • Pierre Morell
    • 3
  1. 1.Biological Sciences Research Center and Department of PathologyUniversity of North CarolinaChapel HillUSA
  2. 2.Division of Molecular BiologyNathan Kline InstituteOrangeburgUSA
  3. 3.Biological Sciences Research Center and Department of BiochemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations