Glycoproteins of Myelin and Myelin-Forming Cells

  • Richard H. Quarles

Abstract

Myelin is formed as an extension and modification of the surface membrane of the oligodendrocyte in the central nervous system (CNS) and the Schwann cell in the peripheral nervous system (PNS). The extended plasma membranes are wrapped around the axons in a spiral fashion, leading to a structure that is seen in the electron microscope to consist of alternating major dense and intraperiod lines. The relationship of the myelin sheath to the myelin-forming cells and the axon, as well as the morphological and biochemical differences between CNS and PNS myelin, are described in detail elsewhere (Morell et al., 1989). However, the basic structures of CNS and PNS myelin sheaths are similar, with the major dense lines consisting of the structure formed by the junction of the cytoplasmic surfaces of the plasma membrane of myelin-forming cells and the intraperiod lines corresponding to the point at which the extra-cellular surfaces come together. The membranes composing the compacted myelin sheaths are characterized by a high lipid content and only a few major proteins. CNS myelin has two major proteins: the hydrophobic 30-kDa proteolipid protein (PLP) accounting for about half of the total, and the highly positively charged, 14- to 21-kDa myelin basic proteins (MBPs) accounting for over one-third of the total. More than half of the total protein in PNS myelin is the integral, 30-kDa P0 protein, while about one-fourth to one-third is accounted for by lower-molecular-weight positively charged proteins including the same MBPs found in CNS myelin and another 14-kDa component called the P2 protein. Current concepts about how these major myelin proteins are incorporated into the myelin sheath are summarized in Figure 1.

Keywords

Carbohydrate Codon Cysteine Fractionation Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abo, T., and Balch, C. M., 1981, A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1), J. Immunol. 127: 1024–1029.PubMedGoogle Scholar
  2. Agrawal, H. C., Schmidt, R. E., and Agrawal, D., 1983, In vivo incorporation of [3H]palmitic acid into PO protein, the major intrinsic protein of rat sciatic nerve myelin. Evidence for covalent linkage of fatty acid to P0, J. Biol. Chem. 258: 6556–6560.PubMedGoogle Scholar
  3. Ariga, T., Kohriyama, T., Freddo, L., Latov, N., Saito, M., Kon, K., Ando, S., Suzuki, M., Hemling, M., Rinehart, K. L., Jr., Kusònki, S., and Yu, R. K., 1987, Characterization of sulfated glucuronic acid-containing glycolipids reacting with IgM paraproteins in patients with neuropathy, J. Biol. Chem. 262: 848–853.PubMedGoogle Scholar
  4. Arquint, M., Roder, J., Chia, L., Down, J., Wilkerson, D., Bayley, H., Braun, P., and Dunn, R., j987, Molecular cloning and the primary structure of the myelin-associated glycoprotein, Proc. Natl. Acad. Sci. USA 84: 600–604.Google Scholar
  5. Barton, D. E., Arquint, M., Roder, J., Dunn, R., and Franke, U., 1987, The myelin-associated glycopro-tein gene: Mapping to human chromosome 19 and mouse chromosome 7 and expression in quivering mice, Genomics 1:107–112.Google Scholar
  6. Bhatt, S., and Silberburg, D. H., 1986, Oligodendrocyte cell adhesion molecules are related to neural cell adhesion molecule (N-CAM), J. Neurosci. 6: 3348–3354.Google Scholar
  7. Bloom, F. E., Battenberg, E. L. F., Milner, R. J., and Sutcliffe, J. G., 1985, Immunocytochemical mapping of 1B236: A brain specific neuronal protein deduced from the sequence of its mrna, J. Neurosci. 5:1781–1802.Google Scholar
  8. Braun, P. E., Frail, D. E., and Latov, N., 1982, Myelin-associated glycoprotein is the antigen for a monoclonal IgM in polyneuropathy, J. Neurochem. 39:1261–1265.Google Scholar
  9. Brunden, K. R., and Poduslo, J. F., 1987, Lysosomal delivery of the major myelin glycoprotein in the absence of myelin assembly: Posttranslational regulation of the level of expression by Schwann cells, J. Cell Biol. 104: 661–669.PubMedCrossRefGoogle Scholar
  10. Burroni, D., White, F. V., Ceccarini, C., Matthieu, J. M., and Constantino-Ceccarini, E., 1988, Ex- pression of myelin components in mouse Schwann cells in culture, J. Neurochem. 50: 331–336.PubMedCrossRefGoogle Scholar
  11. Cammer, W., Sirota, S. R., and Norton, W. T., 1980, The effect of reducing agents on the apparent molecular weight of the myelin PO protein and the possible identity of PO and “Y” proteins, J. Neurochem. 34: 404–409.PubMedCrossRefGoogle Scholar
  12. Cammer, W., Brosnan, C. F., Bloom, B. R., and Norton, W. T., 1981, Degradation of PO, P1 and Pr proteins in peripheral nervous system myelin by plasmin: Implications regarding the role of macrophages in demyelinating diseases, J. Neurochem. 36:1506–1514.Google Scholar
  13. Carlo, D. J., Karkhanis, Y. D., Bailey, P. J., Wisniewski, H. M., and Brostoff, S. W., 1975, Allergic neuritis: Evidence for the involvement of P2 and PO proteins, Brain Res. 76: 423–430.Google Scholar
  14. Chou, D. K. H., Ilyas, A. A., Evans, J. E., Quarles, R. H., and Jungalwala, F. B., 1985, Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1, Biochem. Biophys. Res. Commun. 128: 383–388.PubMedCrossRefGoogle Scholar
  15. Chou, D. K. H., Ilyas, A. A., Evans, J. E., Costello, C., Quarles, R. H., and Jungalwala, F. B., 1986, Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy, J. Biol. Chem. 261: 11717–11725.PubMedGoogle Scholar
  16. D’Eustachio, P., Colman, D. R., and Salzer, J. L., 1988, Chromosomal location of the mouse gene that encodes the myelin-associated glycoproteins, J. Neurochem. 50: 589–593.PubMedCrossRefGoogle Scholar
  17. Dobersen, M. J., Hammer, J. A., Noronha, A. B., MacIntosh, T. D., Trapp, B. D., Brady, R. O., and Quarles, R. H., 1985, Generation and characterization of mouse monoclonal antibodies to the myelin-associated glycoprotein (MAG), Neurochem. Res. 10: 423–437.CrossRefGoogle Scholar
  18. Edelman, G. M. 1986, Cell adhesion molecules in the regulation of animal form and tissue pattern, Annu. Rev. Cell Biol. 259:14857–14862.Google Scholar
  19. Fahrig, T., Landa, C., Pesheva, P., Kuhn, K., and Schachner, M., 1987, Characterization of binding properties of the myelin-associated glycoprotein to extracellular matrix constituents, EMBO J. 6: 2875 2883.Google Scholar
  20. Figlewicz, D. A., Quarles, R. H., Johnson, D., Barbarash, G. R., and Stemberger, N. H., 1981, Biochemical demonstration of the myelin-associated glycoprotein in the peripheral nervous system, J. Neurochem. 37: 749–758.Google Scholar
  21. Frail, D. E., and Braun, P. E., 1984, Two developmentally regulated messenger RNAs differing in their coding region may exist for the myelin-associated glycoprotein, J. Biol. Chem. 259: 14857–14862.PubMedGoogle Scholar
  22. Frail, D. E., and Braun, P. E., 1985, Abnormal expression of the myelin-associated glycoprotein in the central nervous system of dysmyelinating mutant mice, J. Neurochem. 45:1071–1075.Google Scholar
  23. Frail, D. E., Edwards, A. M., and Braun, P. E., 1984, Molecular characteristics of the myelin-associated glycoprotein that is recognized by a monoclonal IgM in human neuropathy patients, Mol. Immunol. 21: 721–725.PubMedCrossRefGoogle Scholar
  24. Frail, D. E., Webster, H. d., and Braun, P. E., 1985, Developmental expression of the myelin-associated glycoprotein in the peripheral nervous system is different from that in the central nervous system, J. Neurochem. 45:1308–1310.Google Scholar
  25. Freddo, L., Ariga, T., Saito, M., Macala, M.-C., Yu, R. K., and Latov, N., 1985, The neuropathy of plasma cell dyscrasia: Binding of IgM M-proteins with peripheral nerve glycolipids, Neurology 35: 1420–1424.PubMedCrossRefGoogle Scholar
  26. Fushiki, S., and Schachner, M., 1986, Immunocytological localization of cell adhesion molecules L1 and N-CAM and the shared carbohydrate epitope L2 during development of the mouse neocortex, Deli. Brain Res. 24:153–167.Google Scholar
  27. Gay, D., Maddion, P., Sekaly, R., Talle, M. A., Godfrey, M., Long, E., Goldstein, G., Chess, L., Axel, R., Kappler, J., and Merrack, P., 1987, Functional interaction between human T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen, Nature 328: 626–629.Google Scholar
  28. Gendelman, H. E., Pezeshkpour, G. H., Pressman, N. J., Wolinsky, J. S., Quarles, R. H., Dobersen, M. J. Trapp, B. D., Kitt, C. A., Aksamit, A., and Johnson, R. T., 1985, A quantitation of myelin-associated glycoprotein and myelin basic protein loss in different demyelinating diseases, Ann. Neurol. 18:324–328.Google Scholar
  29. Gould, R. M., 1977, Incorporation of glycoproteins into peripheral nerve myelin, J. Cell Biol. 75:326–339. Greenfield, S., Brostoff, S., Eylar, E. H., and Morell, P., 1973, Protein composition of myelin of the peripheral nervous system, J. Neurochem. 20:1207–1216.Google Scholar
  30. Gulcher, J. R., Marton, L. S., and Stefansson, K., 1986, Two large glycosylated polypeptides found in myelinating oligodendrocytes but not in myelin, Proc. Natl. Acad. Sci. USA 83: 2118–2122.PubMedCrossRefGoogle Scholar
  31. Hays, A. P., Latov, N., Takatsu, M., and Sherman, W. H., 1987, Experimental demyelination of nerve induced by serum of patients with neuropathy and an anti-MAG IgM protein, Neurology 37: 24 2256.Google Scholar
  32. Higgins, G. A., Schmale, H., Bloom, F. E., Wilson, M. C., and Milner, R. J., 1986, Developmental shift in the cellular expression of the brain-specific gene 1B236: Localization to oligodendrocytes revealed by in situ hybridization, Soc. Neurosci. Abstr. 12: 213.Google Scholar
  33. Hogan, E. L., and Greenfield, S., 1984, Animal models of genetic disorders of myelin, in: Myelin ( P. Morell, ed.), pp. 489–534, Plenum Press, New York.CrossRefGoogle Scholar
  34. Hughes, R. A. C., Powell, H. C., Braheny, S. L., and Brostoff, S., 1985, Endoneural injection of antisera to myelin antigens, Muscle Nerve 8: 516–522.PubMedCrossRefGoogle Scholar
  35. Ilyas, A. A., Quarles, R. H., MacIntosh, T. D., Dobersen, M. J., Trapp, B. D., Dalakas, M. C., and Brady, R. O., 1984a, IgM in a human neuropathy related to paraproteinemia binds to a carbohydrate determinant in the myelin-associated glycoprotein and to a ganglioside, Proc. Natl. Acad. Sci. USA 81: 1225–1229.PubMedCrossRefGoogle Scholar
  36. Ilyas, A. A., Quarles, R. H., and Brady, R. O., 1984b, Monoclonal antibody HNK-1 reacts with a peripheral nerve ganglioside, Biochem. Biophys. Res. Commun. 122:1206–1211.Google Scholar
  37. Ilyas, A. A., Dobersen, M. J., Willison, H. J., and Quarles, R. H., 1986a, Mouse monoclonal and rabbit polyclonal antibodies prepared to human myelin-associated glycoprotein also react with glycosphingolipids of peripheral nerve, J. Neuroimmunol. 12: 99–106.PubMedCrossRefGoogle Scholar
  38. Ilyas, A. A., Dalakas, M. C., Brady, R. O., and Quarles, R. H., 1986b, Sulfated glucuronyl glycolipids reacting with anti-myelin-associated glycoprotein antibodies including IgM paraproteins in neuropathy: Species distribution and partial characterization of epitopes, Brain Res. 385:1–9.Google Scholar
  39. Ilyas, A. A., Chou, D. K. H., Jungalwala, F. B., and Quarles, R. H., 1988a, Characterization of SGPG epitopes reacting with IgM paraproteins and HNK-1, Trans. Am. Soc. Neurochem., 19:96 (abstr.).Google Scholar
  40. Ilyas, A. A., Willison, H. J., Quarles, R. H., Jungalwala, F. B., Cornblath, D. R., Trapp, B. D., Griffin, D. E., Griffin, J. W., and McKhann, G. M., 1988b, Serum antibodies to gangliosides in Guillain—Barré syndrome, Ann. Neurol., 23: 440–447.Google Scholar
  41. Inuzuka, T., Quarles, R. H., Noronha, A. B., Dobersen, M. J., and Brady, R. 0., 1984, A human lymphocyte antigen is shared with a group of glycoproteins in peripheral nerve, Neurosci. Lett. 51:105-lll.Google Scholar
  42. Inuzuka, T., Quarles, R. H., Health, J., and Trapp, B. D., 1985, Myelin-associated-glycoprotein and other proteins in Trembler mice, J. Neurochem. 44: 793–797.PubMedCrossRefGoogle Scholar
  43. Inuzuka, T., Duncan, I. A., and Quarles, R. H., 1986, Myelin proteins in the CNS of “shaking pups,” Dev. Brain Res. 27: 43–50.CrossRefGoogle Scholar
  44. Inuzuka, T., Johnson, D., and Quarles, R. H., 1987, Myelin-associated glycoprotein in the central and peripheral nervous system of quaking mice, J. Neurochem. 49: 597–602.PubMedCrossRefGoogle Scholar
  45. Ishaque, A., Roomi, M. W., Szymanska, I., Kowalski, S., and Eylar, E. H., 1980, The PO glycoprotein of peripheral nerve myelin, Can. J. Biochem. 58: 913–921.Google Scholar
  46. Itoyama, Y., Sternberger, N. H., Webster, H. d., Quarles, R. H., Cohen, S. R., and Richardson, E. P., Jr., 1980, Immunocytochemical observations on the distribution of myelin-associated glycoprotein and basic protein in multiple sclerosis brain, Ann. Neurol. 7: 167–177.Google Scholar
  47. Johnson, D., and Quarles, R. H., 1986, Deposition of myelin-associated glycoprotein in specific regions of the developing rat central nervous system, Dev. Brain Res. 28: 263–266.CrossRefGoogle Scholar
  48. Johnson, D., Quarles, R. H., and Brady, R. 0. 1982, A radioimmunoassay for the myelin-associated glycoprotein, J. Neurochem. 39:1356–1362.Google Scholar
  49. Johnson, D., Sato, S., Quarles, R. H., Inuzuka, T., Brady, R. O., and Tourtellotte, W., 1986, Quantitation of the myelin-associated glycoprotein in human nervous tissue from controls and multiple sclerosis patients, J. Neurochem. 46:1086–1093.Google Scholar
  50. Keilhauer, G., Faissner, A., and Schachner, M., 1985, Differential inhibition of neurone–neurone, neurone–astrocyte and astrocyte–astrocyte adhesion by Ll, L2 and N-CAM antibodies, Nature 316: 728730.Google Scholar
  51. Kirschner, D. A., and Ganser, A. L., 1980, Compact myelin exists in the absence of basic protein in the shiverer mutant mouse, Nature 283: 207–209.PubMedCrossRefGoogle Scholar
  52. Kitamura, K., Suzuki, M., and Uyemura, K., 1976, Purification and partial characterization of two glycoproteins in bovine peripheral nerve myelin membrane, Biochim. Biophys. Acta 455: 806–816.PubMedCrossRefGoogle Scholar
  53. Kruse, J., Mailhammer, R., Wemecke, A., Faissner, I., Sommer, C., Goridis, C., and Schachner, M., 1984, Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1, Nature 311:153–155.Google Scholar
  54. Kruse, J., Keilhauer, G., Faissner, A., Timpl, R., and Schachner, M., 1985, The Jl glycoprotein—A novel nervous system adhesion molecule of the L2/HNK-1 family, Nature 316:728–/730.Google Scholar
  55. Kucherer, A., Faissner, A., and Schachner, M., 1987, The novel carbohydrate epitope L3 is shared by some neural cell adhesion molecules, J. Cell Biol. 104:1597–1602.Google Scholar
  56. Lai, C., Brow, M. A., Nave, K. A., Noronha, A. B., Quarles, R. H., Bloom, F. E., Milner, R. J ., and Sutcliffe, J. G., 1987, Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing, Proc. Natl. Acad. Sci. USA 84: 4337–4341.Google Scholar
  57. Lai, C., Watson, J. B., Bloom, F. E., Sutcliffe, J. G., and Milner, R. J. 1988, Neural protein 1B236/MAGGoogle Scholar
  58. defines a subgroup of the immunoglobulin superfamily, Immunol. Rev. 100:127–149.Google Scholar
  59. Lane, J. D., and Fagg, G. E., 1980, Protein and glycoprotein composition of myelin subfractions from theGoogle Scholar
  60. developing rat optic nerve and tract, J. Neurochem. 34:163–171.Google Scholar
  61. Lemke, G., 1986, Molecular biology of the major myelin genes, Trends Neurosci. 9: 266–270.CrossRefGoogle Scholar
  62. Lemke, G., and Axel, R., 1985, Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin, Cell 40: 501–508.PubMedCrossRefGoogle Scholar
  63. Lemke, G., Lamar, E., and Patterson, J., 1988, Isolation and analysis of the gene encoding peripheral myelin protein zero, Neuron, 1: 73–83.PubMedCrossRefGoogle Scholar
  64. Linington, C., and Lassman, H., 1987, Antibody responses in chronic experimental allergic encephalomyelitis: Correlation of serum demyelinating activity with antibody titre to the myelin/oligodendrocyte glycoprotein (MOG), J. Neuroimmunol. 17: 61–69.PubMedCrossRefGoogle Scholar
  65. Linington, C., and Waehneldt, T. V., 1981, The glycoprotein composition of peripheral nervous system myelin subfractions, J. Neurochem. 36:1528–1535.Google Scholar
  66. Linington, C., and Waehneldt, T. V., 1983, Peripheral nervous system myelin assembly in vitro: Perturbation by the ionophore monensin, J. Neurochem. 41: 426–433.PubMedCrossRefGoogle Scholar
  67. Linington, C., Webb, M., and Woodhams, P. L., 1984, A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody, J. Neuroimmunol. 6: 387–396.CrossRefGoogle Scholar
  68. Malfroy, B., Bakhit, C., Bloom, F. E., Sutcliffe, J. G., and Milner, R. J., 1985, Brain-specific polypeptide 1B236 exists in multiple molecular forms, Proc. Natl. Acad. Sci. USA 82: 2009–2013.PubMedCrossRefGoogle Scholar
  69. Martini, R., and Schachner, M., 1986, Immunoelectron microscopic localization of neural cell adhesion molecules (Ll, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve, J. Cell Biol. 103: 2439–2448.PubMedCrossRefGoogle Scholar
  70. Matthieu, J. M., Brady, R. O., and Quarles, R. H., 1974, Anomalies of myelin-associated glycoprotein in quaking mice, J. Neurochem. 22: 291–296.PubMedCrossRefGoogle Scholar
  71. Matthieu, J. M., Quarles, R. H., Poduslo, J., and Brady, R. O., 1975a, 35S sulfate incorporation intoGoogle Scholar
  72. myelin glycoproteins. I. Central nervous system, Biochim. Biophys. Acta 392: 159–166.Google Scholar
  73. Matthieu, J. M., Everly, J. L., Brady, R. O., and Quarles, R. H., 1975b, 35S sulfate incorporation into myelin glycoproteins. II. Peripheral nervous tissue, Biochim. Biophys. Acta 392:167–174.Google Scholar
  74. Matthieu, J. M., Koellreutter, B., and Joyet, M. L., 1978, Protein and glycoprotein composition of myelin and myelin subfractions from brains of Quaking mice, J. Neurochem. 30:783–790.Google Scholar
  75. Matthieu, J. M., Roch, J. M., Omlin, F. X., Rambaldi, I., Almazan, G., and Braun, P. E., 1986a, Myelin instability and oligodendrocyte metabolism in myelin-deficient mutant mice, J. Cell Biol. 103: 2673 2682.Google Scholar
  76. Matthieu, J. M., Waehneldt, T. V., and Eschmann, N., 1986b, Myelin-associated glycoprotein and myelin basic protein are present in central and peripheral myelin throughout phylogeny, Neurochem. Int. 8: 521–526.PubMedCrossRefGoogle Scholar
  77. McGarry, R. C., Helfand, S. L., Quarles, R. H., and Roder, J. C., 1983, Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-1, Nature 306: 376–378.PubMedCrossRefGoogle Scholar
  78. McIntyre, L. J., Quarles, R. H., and Brady, R. O., 1979, Lectin-binding proteins in central-nervous-system myelin: Detection of glycoproteins of purified myelin on polyacrylamide gels by 3H-concanavalin A binding, Biochem. J. 183: 205–212.PubMedGoogle Scholar
  79. Mena, E. E., Moore, B. W., Hagen, S., and Agrawal, H. C., 1981, Demonstration of five major glycoproteins in myelin and myelin subfractions, Biochem. J. 195: 525–528.PubMedGoogle Scholar
  80. Mendell, J. R., Sahenk, Z., Whitaker, J. N., Trapp, B. D., Yates, A. J ., Griggs, R. C., and Quarles, R. H., 1985, Polyneuropathy and IgM monoclonal gammopathy; studies on the pathogenetic role of antiMAG antibodies, Ann. Neurol. 17: 243–254.Google Scholar
  81. Milner, R. J., and Sutcliffe, J. G., 1983, Gene expression in rat brain, Nucleic Acids Res. 11:5497–5520. Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J ., and Raff, M. C., 1980, Myelin-specificGoogle Scholar
  82. proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture, J. Cell Biol. 84:483–494. Moller, J. R., Yanagisawa, K., Brady, R. O., Tourtellotte, W. W., and Quarles, R. H., 1987, Myelin-Google Scholar
  83. associated glycoprotein in multiple sclerosis lesions: A quantitative and qualitative analysis, Ann. Google Scholar
  84. Neurol. 22:469–474.Google Scholar
  85. Morell, P., Quarles, R. H., and Norton, W. T., 1989, Myelin formation, structure, and biochemistry, in: Basic Neurochemistry, 4th ed. (G. Siegel, B. Agranoff, W. Albers, and P. Molioff, eds.), pp. 109136, Raven Press, New York.Google Scholar
  86. Mostov, K. E., Friedlander, M., and Blobel, G., 1984, The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin domains, Nature 308: 37–43.PubMedCrossRefGoogle Scholar
  87. Murray, N., and Steck, A. J., 1984, Indication of a possible role in a demyelinating neuropathy for an antigen shared between myelin and NK cells, Lancet 1: 711–713.PubMedCrossRefGoogle Scholar
  88. Nobile-Orazio, E., Hays, A. P., Latov, N., Perman, G., Golier, J., Shy, M. E., and Freddo, L., 1984, Specificity of mouse and human monoclonal antibodies to myelin-associated glycoprotein, Neurology 34:1336–1342.Google Scholar
  89. Noronha, A., Tolliver, T., Dobersen, M., Hammer, J., and Quarles, R. H., 1984a, Tryptic fragments of human and rat myelin-associated glycoprotein, Trans. Am. Soc. Neurochem. 15: 233 (Abstract).Google Scholar
  90. Noronha, A., Tolliver, T. J., Grojec, P. L., Curtis, M. A., and Quarles, R. H., 1984b, Biochemical and immunochemical characterization of the myelin-associated glycoprotein from human tissue, Soc. Neurosci. Abstr. 10: 81.Google Scholar
  91. Noronha, A. B., Harper, J., Ilyas, A. A., Reisfeld, R. A., and Quarles, R. H., 1986a, Myelin-associated glycoprotein shares an antigenic determinant with a glycoprotein of human melanoma cells, J. Neurochem. 47: 1558–1565.PubMedCrossRefGoogle Scholar
  92. Noronha, A. B., Ilyas, A. A., Antonicek, H., Schachher, M., and Quarles, R. H., 1986b, Molecular specificity of L2 monoclonal antibodies that bind to carbohydrate determinants of neural cell adhesion molecules and their resemblance to other monoclonal antibodies recognizing the myelin-associated glycoprotein, Brain Res. 385: 237–244.PubMedCrossRefGoogle Scholar
  93. Noronha, A. B., Hammer, J. A., Lai, C., Brow, M. A., Watson, J. B., Bloom, F. E., Milner, R. J. Sutcliffe, J. G., and Quarles, R. H., 1987, Relationship of the myelin-associated glycoprotein (MAG) and the brain 1B236 protein, J. Neurochem. 48S:33 (Abstract).Google Scholar
  94. Noronha, A., Hammer, J., Milner, R., Sutcliffe, J. G., and Quarles, R., 1988, Immunological characterization of MAG in normal and mutant CNS and PNS, Trans. Am. Soc. Neurochem., 19: 118 (abstr.).Google Scholar
  95. Omlin, F. X., Matthieu, J. M., Philippe, E., Roch, J. M., and Droz, B., 1985, Expression of myelin-associated glycoprotein by small neurons of the dorsal root ganglion in chickens, Science 227:1359–1360.Google Scholar
  96. O’Shannessy, D. J., Willison, H. J., Inuzuka, T., Dobersen, M. J., and Quarles, R. H., 1985, The species distribution of nervous system antigens that react with anti-myelin-associated glycoprotein antibodies, J. Neuroimmunol. 9: 255–268.PubMedCrossRefGoogle Scholar
  97. Owens, G. C., Edelman, G. M., and Cunningham, B. A., 1987, Organization of the neural cell adhesion molecule gene, Proc. Natl. Acad. Sci. USA 84: 294–298.PubMedCrossRefGoogle Scholar
  98. Peters, A., and Vaughn, J. E., 1970, Morphology and development of the myelin sheath, in: Myelination ( A. N. Davison and A. Peters, eds.), pp. 3–79, Thomas, Springfield, Ill.Google Scholar
  99. Pleasure, D., Hardy, M., Kreider, B., Stem, J., Doan, H., Shuman, S., and Brown, S., 1982, Schwann cell surface proteins and glycoproteins, J. Neurochem. 39: 486–492.PubMedCrossRefGoogle Scholar
  100. Poduslo, J. F., 1981, Developmental regulation of the carbohydrate composition of glycoproteins associated with central nervous system myelin, J. Neurochem. 36:1924–1931.Google Scholar
  101. Poduslo, J. F., Quarles, R. H., and Brady, R. O., 1976, External labeling of galactose in surface membrane glycoproteins of the intact myelin sheath, J. Biol. Chem. 251: 153–158.PubMedGoogle Scholar
  102. Poduslo, J. F., Harman, J. L., and McFarlin, D. E., 1980, Lectin receptors in central nervous system myelin, J. Neurochem. 34:1733–1744.Google Scholar
  103. Poduslo, J. F., Berg, C. T., Ross, S. M., and Spencer, P. S., 1985a, Regulation of myelination: Axons not required for the biosynthesis of basal levels of the major myelin glycoprotein by Schwann cells in denervated distal segments of the adult cat sciatic nerve, J. Neurosci. Res. 14: 177–185.PubMedCrossRefGoogle Scholar
  104. Poduslo, J. F., Dyck, P. J., and Berg, C. T., 1985b, Regulation of myelination: Schwann cell transition from a myelin-maintaining state to a quiescent state after permanent nerve transection, J. Neurochem. 44: 388–400.PubMedCrossRefGoogle Scholar
  105. Poduslo, S. E., 1983, Proteins and glycoproteins in plasma membranes and in membrane lamellae produced by purified oligodendroglia in culture, Biochim. Biophys. Acta 728: 59–65.PubMedCrossRefGoogle Scholar
  106. Poltorak, M., Sadoul, R., Keilhauer, G., Landa, C., Fahrig, T., and Schachner, M., 1987, Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron—oligodendrocyte and oligodendrocyte—oligodendrocyte interaction, J. Cell Biol. 105:1893–1899.Google Scholar
  107. Prineas, J. W., Kwon, E. E., Stemberger, N. H., and Lennon, V. A., 1984, The distribution of myelin-associated glycoprotein in actively demyelinating multiple sclerosis lesions, J. Neuroimmunol. 6: 25 1264.Google Scholar
  108. Quarles, R. H., 1979, Glycoproteins in myelin and myelin-related membranes, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 209–233, Plenum Press, New York.Google Scholar
  109. Quarles, R. H., 1984, Myelin-associated glycoprotein in development and disease, Dev. Neurosci. 6: 285–303.CrossRefGoogle Scholar
  110. Quarles, R. H., 1988, Myelin-associated glycoprotein: Functional and clinical aspects, in: Neuronal and Glial Proteins: Structure, Function and Clinical Applications ( P. J. Marangos, I. Campbell, and R. H. Cohen, eds.), pp. 295–320, Academic Press, New York.Google Scholar
  111. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973a, Evidence for the close association of a glycoprotein with myelin in rat brain, J. Neurochem. 21:1177–1191.Google Scholar
  112. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973b, Myelin-associated glycoprotein: A developmental change, Brain Res. 58: 506–509.PubMedCrossRefGoogle Scholar
  113. Quarles, R. H., Barbarash, G. R., Figlewicz, D. A., and McIntyre, L. J., 1983, Purification and partial characterization of the myelin-associated glycoprotein from adult rat brain, Biochim. Biophys. Acta 757:140–143.Google Scholar
  114. Quarles, R. H., Barbarash, G. R., and MacIntosh, T. D., 1985, Methods for the identification and characterization of glycoproteins in central and peripheral myelin, Res. Methods Neurochem. 6: 303357.Google Scholar
  115. Quarles, R. H., Ilyas, A. A., and Willison, H. J., 1986, Antibodies to glycolipids in demyelinating diseases of the human peripheral nervous system, Chem. Phys. Lipids 42: 235–248.PubMedCrossRefGoogle Scholar
  116. Rapaport, R. N., and Benjamins, J. A., 1981, Kinetics of entry of P0 protein into peripheral nerve myelin, J. Neurochem. 37:164–171.Google Scholar
  117. Rapaport, R. N., and Benjamins, J. A., and Skoff, R. P., 1982, Effects of monensin on assembly of PO protein into peripheral nerve myelin, J. Neurochem. 39:1101–1110.Google Scholar
  118. Rieger, F., Daniloff, J. K., Pincon-Raymond, M., Crossin, K. L., Grumet, M., and Edelman, G. M., 1986, Neuronal cell adhesion molecules and cytotactin are colocalized at the node of Ranvier, J. Cell Biol. 103: 379–391.PubMedCrossRefGoogle Scholar
  119. Roomi, M. W., Ishaque, A., Kahn, N. R., and Eylar, E. H., 1978, The PO protein: The major glycoprotein of peripheral nerve myelin, Biochim. Biophys. Acta 536:112–121.Google Scholar
  120. Ruoslahti, E., and Pierschbacher, M. D., 1986, Arg-Gly-Asp: A versatile cell recognition signal, Cell 44: 517–518.PubMedCrossRefGoogle Scholar
  121. Sakamoto, Y., Kitamura, K., Yoshimura, K., Nishijima, T., and Uyemura, K., 1986, Fatty acid-linked peptides from bovine PO protein in peripheral nerve myelin, Biomed. Res. 7: 261–266.Google Scholar
  122. Sakamoto, Y., Kitamura, K., Yoshimura, K., Nishijima, T., and Uyemura, K., 1987, Complete amino acid sequence of PO protein in bovine peripheral nerve myelin, J. Biol. Chem. 262: 4208–4214.PubMedGoogle Scholar
  123. Salzer, J. L., Holmes, W. P., and Colman, D. R., 1987, The amino acid sequences of the myelin-associated glycoproteins: Homology to the immunoglobulin gene superfamily, J. Cell Biol. 104: 957–965.PubMedCrossRefGoogle Scholar
  124. Sato, S., Quarles, R. H., and Brady, R. O., 1982, Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain, J. Neurochem. 39: 97–105.PubMedCrossRefGoogle Scholar
  125. Sato, S., Baba, H., Tanaka, M., Yanagisawa, K., and Miyatake, T., 1983, Antigenic determinant shared between myelin-associated glycoprotein from human brain and natural killer cells, Biomed. Res. 4: 489–493.Google Scholar
  126. Sato, S., Yanagisawa, K., and Miyatake, T., 1984a, Conversion of myelin-associated glycoprotein (MAG) to a smaller derivative by calcium activated neutral protease (CANP)-like enzyme in myelin and inhibition by E-64 analogue, Neurochem. Res. 9: 629–635.PubMedCrossRefGoogle Scholar
  127. Sato, S., Quarles, R. H., Brady, R. O., and Tourtellotte, W. W., 1984b, Elevated neutral protease activity in myelin from brains of patients with multiple sclerosis, Ann. Neurol. 15: 264–267.PubMedCrossRefGoogle Scholar
  128. Sato, S., Baba, T., Inuzuka, T., and Miyatake, T., 1986, Anti-myelin-associated glycoprotein antibody in sera from patients with demyelinating diseases, Acta Neurol. Scand. 74: 115–120.PubMedCrossRefGoogle Scholar
  129. Schober, R., Itoyama, Y., Stemberger, N. H., Trapp, B. D., Richardson, E. P., Asbury, A. K., Quarles, R. H., and Webster, H. d., 1981, Immunocytochemical study of PO glycoprotein, Pl and P2 basic proteins, and myelin-associated glycoprotein (MAG) in lesions of idiopathic polyneuritis, Neuropathol. Appl. Neurobiol. 7: 437–451.CrossRefGoogle Scholar
  130. Schwarting, G. A., Jungalwala, F., Chou, D. K. H., Boyer, A. M., and Yamoto, M., 1987, Sulfated glucuronic-acid containing glycoconjugates are temporally and spatially regulated antigens in the developing mammalian nervous system, Dey. Biol. 120: 65–76.CrossRefGoogle Scholar
  131. Shuman, S., Hardy, M., and Pleasure, D., 1983, Peripheral nervous system myelin and Schwann cell glycoproteins: Identification by lectin binding and partial purification of a peripheral nervous system myelin-specific 170,000 molecular weight glycoprotein, J. Neurochem. 41:1277–1285.Google Scholar
  132. Shuman, S., Hardy, M., and Pleasure, D., 1986, Immunochemical characterization of peripheral nervous system myelin 170,000-Mr glycoprotein, J. Neurochem. 47: 811–818.PubMedCrossRefGoogle Scholar
  133. Shuman, S., Hardy, M., Sobue, G., and Pleasure, D., 1988, A cyclic AMP analogue induces synthesis of a myelin-specific glycoprotein by cultured Schwann cells, J. Neurochem. 50: 190–194.PubMedCrossRefGoogle Scholar
  134. Shy, M. E., Gabel, C. A., Vietorisz, E., and Latov, N., 1986, Characterization of oligosaccharides that bind to human anti MAG antibodies and to the mouse monoclonal antibody, HNK-1, J. Neuroimmunol. 12: 291–298.PubMedCrossRefGoogle Scholar
  135. Singh, H., and Spritz, N., 1976, Protein kinases associated with peripheral nerve myelin. I. Phosphorylation of endogenous myelin proteins and exogenous substrates, Biochim. Biophys. Acta 448: 325–337.PubMedCrossRefGoogle Scholar
  136. Smith, M. E., 1980, Biosynthesis of peripheral nervous system myelin proteins in vitro, J. Neurochem. 35: 1183–1189.PubMedCrossRefGoogle Scholar
  137. Smith, M. E., and Perret, V., 1986, Immunological nonidentity of 19K protein and TP0 in peripheral nervous system myelin, J. Neurochem. 47: 924–929.PubMedCrossRefGoogle Scholar
  138. Smith, M. E., and Stemberger, N. H., 1982, Glycoprotein biosynthesis in peripheral nervous system myelin: Effect of tunicamycin, J. Neurochem. 38:1044–1049.Google Scholar
  139. Steck, A., Murray, N., Meier, C., Page, N., and Perruisseaku, G., 1983a, Demyelinating neuropathy and monoclonal IgM antibody to myelin-associated glycoprotein, Neurology 33:19–23.Google Scholar
  140. Steck, A. J ., Murray, N., Vandevelde, M., and Zurbriggen, A., 19836, Human monoclonal antibodies to myelin-associated glycoprotein. Comparison of specificity and use for immunocytochemical localisation of antigen, J. Neuroimmunol. 5: 145–156.Google Scholar
  141. Stefansson, K., Marton, L., Antel, J. P., Wollman, R. L., Roos, R. P., Chejfec, G., and Amason, B. H. G. W., 1983, Neuropathy accompanying monoclonal IgM gammopathy, Acta Neuropathol. 59: 255261Google Scholar
  142. Stemberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. d., 1979, Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin forming cells of developing rat, Proc. Natl. Acad. Sci. USA 76: 1510–1514.CrossRefGoogle Scholar
  143. Sutcliffe, J. G., Milner, R. J., Shinnick, T. M., and Bloom, F. E., 1983, Identifying the protein products of brain-specific genes with antibodies to chemically synthesized peptides, Cell 33: 671–682.PubMedCrossRefGoogle Scholar
  144. Trapp, B. D., 1988, Distribution of MAG and PO protein during myelin compaction in quaking mouseGoogle Scholar
  145. peripheral nerve J. Cell Biol. 107:675–685.Google Scholar
  146. Trapp, B. D., and Quarles, R. H., 1982, Presence of myelin-associated glycoprotein correlates with alterations in the periodicity of peripheral myelin, J. Cell Biol. 92: 877–882.Google Scholar
  147. Trapp, B. D., and Quarles, R. H., 1984, ImnMiWocytochemical localization of the myelin-associated glycoprotein: Fact or artifact? J. Neuroimmunol. 6: 231–249.PubMedCrossRefGoogle Scholar
  148. Trapp, B. D. McIntyre, L. J., Quarles, R. H. Sternberger, N. H., and Webster, H. d., 1979, Immunocytochemical localization of rat peripheral nervous system myelin proteins: P2 protein is not a component of all peripheral nervous system myelin sheaths, Proc. Natl. Acad. Sci. USA 76:35523556.Google Scholar
  149. Trapp, B. D., Itoyama, Y., Sternberger, N. H. Quarles, R. H. and Webster, H. d., 1981, Immunocytochemical localization of P0 protein in Golgi complëz membranes and myelin of developing rat Schwann cells, J. Cell Biol. 90:1–6.Google Scholar
  150. Trapp, B. D., Quarles, R. H., and Suzuki, K., 1984, Lnnidnöcytdehemical studies of quaking mice support a role for the myelin-associated glycoprotein iti forming and maintaining the periaxonal space and periaxonal cytoplasmic collar in myelinating Schwann cells, J. Cell Biol. 99: 595–606.Google Scholar
  151. Trapp, B. D., Griffin, J. W., Wong, M., O’Connell, M., and Andrews, S. B., 1985, Localization of F-actin in one micron frozen sections of myelinated peripheral nerve, J. Cell Biol. 101 (2): 33a.Google Scholar
  152. Trapp, B. D., O’Connell, M. F., and Andrews, S. B., 1986, Ultrastructural immunolocalization of MAG and PO proteins in cryosections of peripheral nerve, J. Cell Biol. 103 (2): 228a.Google Scholar
  153. Tucker, G. C., Aoyama, H., Lipinski, M., Tursz, T., and Thiery, J. P., 1984, Identical reactivity of monoclonal antibodies HNK-1 and NC-1: Conservation in vertebrates on cells derived from neural primordium and on some leukocytes, Cell Differ. 14: 223–230.Google Scholar
  154. Uyemura, K., Suzuki, M., Sakamoto, Y., and Tanaka, S., 1987, Structure of PO protein: Homology to immunoglobulin superfamily, Biomed. Res. 8: 353–357.Google Scholar
  155. Waehneldt, T. V., Matthien, J. M., and Jeserich, G., 1986, Commentary: Appearance of myelin proteins during vertebrate evolution, Neurochem. Int. 4: 463–474.Google Scholar
  156. Wajgt, A., and Gorily, M., 1983, CSF antibodies to myelin basic protein and to myelin-associated glycoprotein in multiple sclerosis. Evidence of the intrathecal production, Acta Neurol. Scand. 68: 337–343.Google Scholar
  157. Webster, H. d., Palkovits, C. G., Stoner, G. L., Favilla, J. T., Frail, D. E., and Braun, P. E., 1983, Myelin-associated glycoprotein—Electron microscopic immunocytochemical localization in compact developing and adult central nervous system myelin, J. Neurochem. 41:1469–1479.Google Scholar
  158. Wiggins, R. C., and Morell, P., 1980, Phosphorylation and fucosylation of myelin proteins in vitro by sciatic nerve from developing rats, J. Neurochem. 34: 627–634.Google Scholar
  159. Williams, A. F., 1987, A year in the life of the immunoglobulin superfamily, Immunol. Today 8: 298–303.Google Scholar
  160. Williams, A. F., Barclay, A. N., Clark, M. J., and Gagnon, J., 1985, Cell surface glycoproteins and the origin of immunity, in: Gene Expression during Normal and Malignant Differentiation ( L. C. Anderson, C. G. Ghamberg, and P. Ekblon, eds.), pp. 125–138, Academic Press, New York.Google Scholar
  161. Willison, H. J. Ilyas, A. A., O’Shannessy, D. J., Pulley, M., Trapp, B. D., and Quarles, R. H., 1987, Myelin-associated glycoprotein and related glycoconjugates in developing cat peripheral nerve: A correlative biochemical and morphometric study, J. Neurochem. 49:1853–1862.Google Scholar
  162. Willison, H. J., Trapp, B. D., Bacher, J. T., and Quarles, R. H., 1988a, The expression of myelin-associated glycoprotein in regenerating cat sciatic nerve, Brain Res. 444:10–16.Google Scholar
  163. Willison, H. J., Trapp, B. D., Bacher, J. D., Dalkas, M. C., Griffin, J. W., and Quarles, R. H., 1988b, Demyelination induced by intraneural injection of human anti-myelin associated glycoprotein antibodies, Muscle Nerve 11:1169–1176.Google Scholar
  164. Wood, J. G., and Dawson, R. M. C., 1974, Lipid and protein changes in sciatic nerve during Wallerian degeneration, J. Neurochem. 22: 631–635.PubMedCrossRefGoogle Scholar
  165. Yanagisawa, K., and Quarles, R. H., 1986, Jimpy mice: Quantitation of myelin-associated glycoprotein and other proteins, J. Neurochem. 47: 322–325.PubMedCrossRefGoogle Scholar
  166. Yanagisawa, K., Quarles, R. H., Johnson, D., Brady, R. O., and Whitaker, J., 1985, A derivative of myelin-associated glycoprotein (dMAG) in cerebrospinal fluid of normals and patients with neurological disease, Ann. Neurol. 18: 464–469.PubMedCrossRefGoogle Scholar
  167. Yanagisawa, K., Duncan, I. D., Hammang, J. P., and Quarles, R. H., 1986, Myelin-deficient rat: Analysis of myelin proteins, J. Neurochem. 47: 1901–1907.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Richard H. Quarles
    • 1
  1. 1.Section on Myelin and Brain Development, Laboratory of Molecular and Cellular NeurobiologyNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUSA

Personalised recommendations