Advertisement

Lysosomal Degradation of Glycoproteins and Glycosaminoglycans

  • Larry W. Hancock
  • Glyn Dawson

Abstract

The catabolism of brain glycoconjugates is a complex process involving the interaction of endoglycosidases, exoglycosidases, and proteinases, as summarized in Table 1. Lysosomal catabolism of these glycoconjugates further requires the delivery of both the catabolic enzymes and their substrates to this organelle, and the maintenance of a functional milieu having the proper acidic pH and complement of cofactors (e.g., cations) to facilitate efficient catabolism.

Keywords

Hyaluronic Acid Lysosomal Enzyme Catabolic Enzyme Oligosaccharide Chain Chondroitin Sulfate Proteoglycan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abejon, C., and Hirschberg, C. H., 1988, Intrinsic membrane of glycoproteins with cytosol-oriented sugars in the endoplasmic reticulum, Proc. Natl. Acad. Sci. USA 85: 1010–1014.CrossRefGoogle Scholar
  2. Abraham, C. R., Selkoe, D. J., and Potter, H., 1988, Immunochemical identification of the serine protease inhibitor al-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease, Cell 52: 487–501.PubMedCrossRefGoogle Scholar
  3. Abraham, D., Blakemore, W. F., Jolly, R. D., Sidebotham, R., and Winchester, B., 1983, The catabolism of mammalian glycoproteins, Biochem. J. 215: 573–579.PubMedGoogle Scholar
  4. Abraham, D., Blakemore, W. F., Dell, A., Herrtage, M. E., Jones, J., Littlewood, J. T., Oates, J., Palmer, A. C., Sidebotham, R., and Winchester, B., 1984, The enzymic defect and storage products in canine fucosidosis, Biochem. J. 221: 25–33.Google Scholar
  5. Acheson, A., and Rutishauser, U., 1988, Neural cell adhesion molecule regulates cell contact-mediated changes in choline acetyltransferase activity of embryonic chick sympathetic neurons, J. Cell Biol. 106: 479–486.PubMedCrossRefGoogle Scholar
  6. Aerts, J. M. F. G., Brul, S., Donker-Koopman, W. E., van Weely, S., Murray, G. J., Barranger, J. A., Tager, J. M., and Schram, A. W., 1986, Efficient routing of glucocerebrosidase to lysosomes requires complex oligosaccharide formation, Biochem. Biophys. Res. Commun. 141: 452–458.PubMedCrossRefGoogle Scholar
  7. Ahlberg, J., Berkenstam, A., Henell, F., and Glaumann, H., 1985, Degradation of short and long-lived proteins in isolated rat liver lysosomes, J. Biol. Chem. 260: 5847–5854.PubMedGoogle Scholar
  8. Alam, T., and Balasubramanian, A. S., 1978, The purification, properties and characterization of three forms of a-L-fucosidase from monkey brain, Biochim. Biophys. Acta 524: 373–384.PubMedCrossRefGoogle Scholar
  9. Alvares, K., and Balasubramanian, A. S., 1982, Lysosomal and microsomal ß-glucuronidase of monkey brain, Biochim. Biophys. Acta 708: 124–133.PubMedCrossRefGoogle Scholar
  10. Aquino, D. A., Margolis, R. U., and Margolis, R. K., 1984, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue, J. Cell Biol. 99: 1117–1129.PubMedCrossRefGoogle Scholar
  11. Aronson, N. N., Jr., and Docherty, P. A., 1983, Degradation of [6–3H]- and [1–14C]glucosamine-labeled asialo-al-acid glycoprotein by the perfused rat liver, J. Biol. Chem. 258: 4266–4271.PubMedGoogle Scholar
  12. Backer, J. M., and Dice, J. F., 1986, Covalent linkage of ribonuclease S-peptide to microinjected proteins causes their intracellular degradation to be enhanced during serum withdrawal, Proc. Natl. Acad. Sci. USA 83: 5830–5834.PubMedCrossRefGoogle Scholar
  13. Bame, K. J., and Rome, L. H., 1986, Genetic evidence for transmembrane acetylation by lysosomes, Science 233: 1087–1089.Google Scholar
  14. Barriocanal, J. G., Bonifacino, J. S., Yuan, L., and Sandoval, J., 1986, Biosynthesis, glycosylation, movement through the Golgi system and transport to the lysosomes by an N-linked carbohydrate-independent mechanism of three lysosomal integral membrane proteins (LIMPS), J. Biol. Chem. 261: 16755–16763.PubMedGoogle Scholar
  15. Baussant, T., Strecker, G., Wieruszeski, J.-M., Montreull, J., and Michalski, J.-C., 1986, Catabolism of glycoprotein glycans, Eur. J. Biochem. 159: 381–385.PubMedCrossRefGoogle Scholar
  16. Ben-Yoseph, Y., Shapira, E., Edelman, D., Burton, B. K., and Nadler, H. L., 1977, Purification and properties of neutral ß-galactosidase activities from human liver, Arch. Biochem. Biophys. 184: 373379.Google Scholar
  17. Bienkowski, M. J., and Conrad, H. E., 1984, Kinetics of proteoheparan sulfate synthesis, secretionGoogle Scholar
  18. endocytosis, and catabolism by a hepatocyte cell line, J. Biol. Chem. 259:12989–12996.Google Scholar
  19. Bischoff, J., and Kornfeld, R., 1986, The soluble form of rat liver a-mannosidase is immunologically related to the endoplasmic reticulum membrane a-mannosidase, J. Biol. Chem. 261: 4758–4765.PubMedGoogle Scholar
  20. Bourbon, J. R., Doncet, E., and Rieutort, M., 1987, Role of a-glucosidase in fetal lung maturation, Biochim. Biophys. Acta 917: 203–210.PubMedCrossRefGoogle Scholar
  21. Brassart, D., Baussant, T., Wieruszeski, J.-M., Strecker, G., Montreuil, J., and Michalski, J.-C.., 1987, Catabolism of N-glycosylprotein glycans: Evidence for a degradation pathway of sialoglycoasparagines resulting from the combined action of the lysosomal aspartylglucosaminidase and endo-N-acetyl- 3-Dglucosaminidase, Eur. J. Biochem. 169: 131–136.PubMedCrossRefGoogle Scholar
  22. Brauker, J. H., and Wang, J. L., 1987, Non-lysosomal processing of cell-surface heparan sulfate proteoglycans, J. Biol. Chem. 262: 13093–13101.PubMedGoogle Scholar
  23. Brauker, J. H., Roff, C. F., and Wang, J. L., 1986, The effect of mannose 6-phosphate on the turnover of the proteoglycans in the extracellular matrix of human fibroblasts, Exp. Cell Res. 164: 115–126.Google Scholar
  24. Braulke, T., Hille, A., Huttner, H. B., Hasilik, A., and von Figura, K., 1987, Sulfated oligosaccharides in human lysosomal enzymes, Biochem. Biophys. Res. Commun. 143: 178–185.PubMedCrossRefGoogle Scholar
  25. Burditt, L. J., Chotai, K., Hirani, S., Nugent, P. G., Winchester, B. G., and Blakemore, W. F., 1980, Biochemical studies on a case of feline mannosidosis, Biochem. J. 189: 467–473.PubMedGoogle Scholar
  26. Cain, C. C., and Murphy, R. F., 1988, A chloroquine-resistant Swiss 3T3 cell line with a defect in late endocytic acidification, J. Cell Biol. 106: 269–277.PubMedCrossRefGoogle Scholar
  27. Carroll, M., Dance, N., Masson, P. K., Robinson, D., and Winchester, B. G., 1972, Human mannosidosis—The enzymic defect, Biochem. Biophys. Res. Commun. 49: 579–583.PubMedCrossRefGoogle Scholar
  28. Cenci di Bello, I., Dorling, P., and Winchester, B., 1983, The storage products in genetic and swainsonineinduced human mannosidosis, Biochem. J. 215: 693–696.PubMedGoogle Scholar
  29. Chambers, J. P., and Elbein, A. D., 1986, Effects of castanospermine on purified lysosomal a-1,4glucosidase, Enzyme 35: 53–56.PubMedGoogle Scholar
  30. Chen, J. W., Murphy, T. L., Willingham, M. C., Pastan, I., and August, J. T., 1985, Identification of two lysosomal membrane glycoproteins, J. Cell Biol. 101: 85–95.PubMedCrossRefGoogle Scholar
  31. Chiang, H.-L., and Dice, J. F., 1988, Peptide sequences that target proteins for enhanced degradation during serum withdrawal, J. Biol. Chem. 263: 6797–6805.PubMedGoogle Scholar
  32. Chien, S.-F., and Dawson, G., 1980, Purification and properties of two forms of human a-L-fucosidase, Biochim. Biophys. Acta 614: 476–488.PubMedCrossRefGoogle Scholar
  33. Chou, D. K. H., Ilyas, A. A., Evans, J. E., Costello, C., Quarles, R. H., and Jungalwala, F. B., 1986, Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM preparations in neuropathy, J. Biol. Chem. 261: 11717–11725.PubMedGoogle Scholar
  34. Cook, N. J., Dontenwill, M., Meyer, A., Vincendon, G., and Zanetta, P., 1984, Postnatal modifications of endo- 3-D-acetylglucosaminidase in the developing rat cerebellum, Dev. Brain Res. 15: 298–301.CrossRefGoogle Scholar
  35. Corvera, S., Roach, P. J., DePaoli-Roach, A. A., and Czech, M. P., 1988a, Insulin action inhibits insulin-like growth factor-II (IGF-II) receptor phosphorylation in H-35 hepatoma cells, J. Biol. Chem. 263: 3116–3122.PubMedGoogle Scholar
  36. Corvera, S., Yagaloff, K. A., Whitehead, R. E., and Czech, M. P., 1988b, Tyrosine phosphorylation of the receptor for insulin-like growth factor-II is inhibited in plasma membranes from insulin-treated rat adipocytes, Biochem. J. 250: 47–52.PubMedGoogle Scholar
  37. Daniel, P. F., Warren, C. D., and James, L. F., 1984, Swainsonine-induced oligosaccharide excretion in sheep, Biochem. J. 221: 601–607.PubMedGoogle Scholar
  38. Dawson, G., 1982, Evidence for two distinct forms of mammalian ß-mannosidase, J. Biol. Chem. 257: 3369–3371.PubMedGoogle Scholar
  39. Dawson, G., and Glaser, P., 1987, Apparent cathepsin B deficiency in neuronal ceroid lipofuscinosis can be explained by peroxide inhibition, Biochem. Biophys. Res. Commun. 147: 267–274.PubMedCrossRefGoogle Scholar
  40. Dawson, G., and Kernes, S., 1979, Mechanism of action of hydrocortisone potentiation of sulfogalactosylceramide synthesis in mouse oligodendroglioma clonal cell line, J. Biol. Chem. 254: 163167.Google Scholar
  41. Dice, J. F., 1987, Molecular determinants of protein half-lives in eukaryotic cells, FASEB J. 1:349–357. Dice, J. F., Chiang, H.-L., Spencer, E. P., and Backer, J. M., 1986, Regulation of catabolism of microinjected ribonuclease A, J. Biol. Chem. 261: 6853–6859.Google Scholar
  42. Diment, S., and Stahl, P., 1985, Macrophage endosomes contain proteases which degrade endocytosed protein ligands, J. Biol. Chem. 260: 15311–15317.PubMedGoogle Scholar
  43. Diment, S., Leech, M. S., and Stahl, P., 1988, Cathepsin D is membrane-associated in macrophage endosomes, J. Biol. Chem. 263: 6901–6907.PubMedGoogle Scholar
  44. Docherty, P. A., Kuranda, M. J., Aronson, N. N., Jr., BeMiller, J. N., Myers, R. W., and Bohn, J. A., 1986, Effect of a-D-mannopyranosyl-p-nitrophenyltriazene on hepatic degradation and processing of the N-linked oligosaccharide chains of al-acid glycoprotein, J. Biol. Chem. 261: 3457–3463.PubMedGoogle Scholar
  45. Dorling, P. R., Huxtable, C. R., and Colegate, S. M., 1980, Inhibition of lysosomal a-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsonia canescens, Biochem. J. 191: 649–651.PubMedGoogle Scholar
  46. D’Souza, M. P., and August, J. T., 1986, A kinetic analysis of biosynthesis and localization of a lysosome-associated membrane glycoprotein, Arch. Biochem. Biophys. 249: 522–532.PubMedCrossRefGoogle Scholar
  47. Duncan, J. R., and Kornfeld, S., 1988, Intracellular movement of two mannose 6-phosphate receptors: Return to the Golgi apparatus, J. Cell Biol. 106: 617–628.PubMedCrossRefGoogle Scholar
  48. Elbein, A. D., Solf, R., Dorling, P. R., and Vosbeck, K., 1981, Swainsonine: An inhibitor of glycoprotein processing, Proc. Natl. Acad. Sci. USA 78: 7393–7397.PubMedCrossRefGoogle Scholar
  49. Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R., and Tettamanti, G., 1984, Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1, J. Neurochem. 42: 299–305.PubMedCrossRefGoogle Scholar
  50. Facci, L., Skaper, S. D., Favaron, M., and Leon, A., 1988, A role for gangliosides in astroglial cell differentiation in vitro, J. Cell Biol. 106: 61–67.CrossRefGoogle Scholar
  51. Fambrough, D. M., Takeyasu, K., Lippincott-Schwartz, J., and Siegel, N. R., 1988, Structure of LEP100, a glycoprotein that shuttles between lysosomes and the plasma membrane, deduced from the nucleotide sequence of the encoding cDNA, J. Cell Biol. 106: 61–67.PubMedCrossRefGoogle Scholar
  52. Farrell, D. F., Baker, H. J., Herndon, R. M., Lindsey, J. R., and McKhann, G. M., 1973, Feline GM1 gangliosidosis: Biochemical and ultrastructural comparisons with the disease in man, J. Neuropathol. Exp. Neurol. 32: 1–18.PubMedCrossRefGoogle Scholar
  53. Faust, P. L., Wall, D. A., Perara, E., Lingappa, V. R., and Kornfeld, S., 1987a, Expression of human cathepsin D in Xenopus oocytes: Phosphorylation and intracellular targeting, J. Cell Biol. 105: 1937–1945.PubMedCrossRefGoogle Scholar
  54. Faust, P. L., Chirgwin, J. M., and Kornfeld, S., 1987b, Renin, a secretory glycoprotein, acquires phosphomannosyl residues, J. Cell Biol. 105: 1947–1955.PubMedCrossRefGoogle Scholar
  55. Finne, J., 1982, Occurrence of unique polysialosylcarbohydrate units in glycoproteins of developing brain, J. Biol. Chem. 257: 11966–11970.PubMedGoogle Scholar
  56. Finne, J., Krusius, T., Margolis, R. K., and Margolis, R. U., 1979, Novel mannitol-containing oligosaccharides obtained by mild alkaline borohydride treatment of a chondroitin sulfate proteoglycan from brain, J. Biol. Chem. 254: 10295–10300.PubMedGoogle Scholar
  57. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C., 1983, Occurrence of a,2–8 linked polysialosyl units in a neural cell molecule, Biochem. Biophys. Res. Commun. 112: 482–487.PubMedCrossRefGoogle Scholar
  58. Fischer, I., Shea, T. S., and Saperstein, V. S., 1986, Induction of lysosomal glycosidases by dibutyryl cAMP in neuroblastoma cells, Neurochem. Res. 11: 589–598.PubMedCrossRefGoogle Scholar
  59. Frick, K. K., Doherty, P. J., Gottesman, M. M., and Scher, C. D., 1985, Regulation of the transcript for a lysosomal protein: Evidence for a gene program modified by platelet-derived growth factor, Mol. Cell. Biol. 5: 2582–2589.PubMedGoogle Scholar
  60. Fuchs, W., Beck, M., and Kresses, H., 1985, Intralysosomal formation and metabolic fate of N-acetylglucosamine-6-sulfate from keratan sulfate, Eur. J. Biochem. 151: 551–556.PubMedCrossRefGoogle Scholar
  61. Gabel, C. A., and Foster, S. A., 1986a, Lysosomal enzyme trafficking in mannose 6-phosphate receptor-positive mouse L cells: Demonstration of a steady state accumulation of phosphorylated acid hydro-lases, J. Cell Biol. 102: 943–950.PubMedCrossRefGoogle Scholar
  62. Gabel, C. A., and Foster, S. A., 1986b, Mannose 6-phosphate receptor-mediated endocytosis of acid hydrolases: Internalization of ß-glucuronidase is accompanied by a limited dephosphorylation, J. Cell Biol. 103: 1817–1827.PubMedCrossRefGoogle Scholar
  63. Gabel, C. A., and Foster, S. A., 1987, Postendocytic maturation of acid hydrolases: Evidence of prelysosomal processing, J. Cell Biol. 105: 1561–1570.PubMedCrossRefGoogle Scholar
  64. Gahl, W. A., Tietze, F., Bashan, N., Steinherz, R., and Schulman, J. D., 1982, Defective cystine exodus from isolated lysosome-rich fractions of cystinotic leucocytes, J. Biol. Chem. 257: 9570–9575.PubMedGoogle Scholar
  65. Gieselmann, V., Hasilik, A., and von Figura, K., 1985, Processing of human cathepsin D in lysosomes in vitro, J. Biol. Chem. 260: 3215–3220.PubMedGoogle Scholar
  66. Grabowski, G. A., Osieck-Newman, K., Dinur, T., Fabbro, D., Legler, G., Gatt, S., and Desnick, R. J., 1986, Human acid 3-glucosidase, J. Biol. Chem. 261: 8263–8269.PubMedGoogle Scholar
  67. Green, S. A., Zimmer, K.-P., Griffiths, G., and Mellman, I., 1987, Kinetics of intracellular transport and sorting of lysosomal membrane and plasma membrane proteins, J. Cell Biol. 105: 1227–1240.PubMedCrossRefGoogle Scholar
  68. Griffiths, G., Hoflack, B., Simons, K., Mellman, I., and Kornfeld, S., 1988, The mannose 6-phosphate receptor and the biogenesis of lysosomes, Cell 52: 329–341.PubMedCrossRefGoogle Scholar
  69. Hanada, K., Tamai, M., Adachi, T., Oguma, K., Kashiwagi, K., Ohmura, S., Kominami, E., Towatari, T., and Katunuma, N., 1983, Characterization of three new analogs of E-64 and their therapeutic application, in: Proteinase Inhibitors: Medical and Biological Aspects (N. Katunuma, ed.), pp. 25–36, Springer-Verlag, Berlin.Google Scholar
  70. Hancock, L. W., 1989, Swainsonine effects on glycoprotein catabolism in cultured cells, in: Proceedings of the International Symposium on Swainsonine and Related Glycosidase Inhibitors (L. James, C. Warren, A. Elbein, and R. Molyneux, eds.), Iowa State University Press, Ames, in press.Google Scholar
  71. Hancock, L. W., and Dawson, G., 1987, Evidence for two catabolic endoglycosidase activities in 3mannosidase-deficient goat fibroblasts, Biochem. Biophys. Acta 928: 13–21.PubMedCrossRefGoogle Scholar
  72. Hancock, L. W., Thaler, M. M., Horwitz, A. L., and Dawson, G., 1982, Generalized N-acetylneuraminic acid storage disease: Quantitation and identification of the monosaccharide accumulating in brain and other tissues, J. Neurochem. 38: 803–809.PubMedCrossRefGoogle Scholar
  73. Hancock, L. W., Horwitz, A. L., and Dawson, G., 1983, N-acetylneuraminic acid and sialoglycoconjugate metabolism in fibroblasts from a patient with generalized N-acetylneuraminic acid storage disease, Biochim. Biophys. Acta 760: 42–52.PubMedCrossRefGoogle Scholar
  74. Hancock, L. W., Jones, M. Z., and Dawson, G., 1986, Glycoprotein catabolism in normal and ß-mannosidase-deficient goat skin fibroblasts, Biochem. J. 234: 175–183.PubMedGoogle Scholar
  75. Hancock, L. W., Ricketts, J. P., and Hildreth, J., 1988, Impaired proteolytic processing of lysosomal Nacetyl-(3-hexosaminidase in cultured fibroblasts from patients with infantile generalized N-acetylneuraminic acid storage disease, Biochem. Biophys. Res. Commun. 152: 83–92.PubMedCrossRefGoogle Scholar
  76. Hanover, J. A., Cohen, C. K., Willingham, M. C., and Park, M. K., 1987, 0-linked N-acetylglucosamine is attached to protein of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins, J. Biol. Chem. 262: 9887–9894.Google Scholar
  77. Hascall, V. C., 1981, Proteoglycans: Structure and function, in: Biology of Carbohydrates ( V. Ginsburg and P. Robbins, eds.), Vol. 1, pp. 1–50, Wiley, New York.Google Scholar
  78. Hasilik, A., and von Figura, K., 1984, Processing of lysosomal enzymes in fibroblasts, in: Lysosomes in Biology and Pathology ( J. T. Dingle, R. T. Dean, and W. Sly, eds.), Vol. 7, pp. 3–16, Elsevier, Amsterdam.Google Scholar
  79. Hildreth, J., Sacks, L., and Hancock, L. W., 1986, N-acetylneuraminic acid accumulation in a buoyant lysosomal fraction of cultured fibroblasts from patients with infantile N-acetylneuraminic acid storage disease, Biochem. Biophys. Res. Commun. 139: 838–844.PubMedCrossRefGoogle Scholar
  80. Hill, D. F., Bullock, P. N., Chiapelli, F., and Rome, L. H., 1985, Binding and internalization of lysosomal enzymes by primary cultures of rat glia, J. Neurochem. Res. 14: 35–47.Google Scholar
  81. Hoffman, S., and Edelman, G. M., 1983, Kinetics of homophilic binding by embryonic and adult forms of neural cell adhesion molecules, Proc. Natl. Acad. Sci. USA 80: 5762–5766.PubMedCrossRefGoogle Scholar
  82. Holt, G. D., and Hart, G. W., 1986, The subcellular distribution of terminal N-acetylglucosamine moieties, J. Biol. Chem. 261: 8049–8057.PubMedGoogle Scholar
  83. Holt, G. D., Snow, C. M., Senior, A., Haltiwanger, R. S., and Gerace, L., and Hart, G. W., 1987a, Nuclear pore complex glycoproteins contain cytoplasmically disposed 0-linked N-acetylglucosamine, J. Cell Biol. 104: 1157–1164.PubMedCrossRefGoogle Scholar
  84. Holt, G. D., Haltiwanger, R. S., Torres, C.-R., and Hart, G. W., 1987b, Erythrocytes contain cytoplasmic glycoproteins, J. Biol. Chem. 262: 14847–14850.PubMedGoogle Scholar
  85. Hoppe, W., Rauch, U., and Kresse, H., 1988, Degradation of endocytosed dermatan sulfate proteoglycan in human fibroblasts, J. Biol. Chem. 263: 5926–5932.PubMedGoogle Scholar
  86. Iozzo, R. V., 1987, Turnover of heparan sulfate proteoglycan in human colon carcinoma cells, J. Biol. Chem. 262: 1888–1900.PubMedGoogle Scholar
  87. Ivy, G. 0., 1988, Decreased neural plasticity in aging and certain pathologic conditions: Possible roles of protein turnover, in: Neural Plasticity: A Lifespan Approach ( T. Petit and G. Ivy, eds.), pp. 351–371, Liss, New York.Google Scholar
  88. Johnson, K. F., Hancock, L. W., and Dawson, G., 1988a, Post-synthetic processing of lysosomal afucosidase, J. Cell Biol. 107: 341a.Google Scholar
  89. Johnson, K. F., Dawson, G., and Hancock, L. W., 1988b, Genetic diversity among a-L-fucosidase deficiencies: evidence for a “protective” factor, Genome 30(Suppl. 1):226 (abstr.).Google Scholar
  90. Jolly, R. D., Winchester, B. G., Gehler, J., Dorling, P. R., and Dawson, G., 1981, Mannosidosis: A comparative review of biochemical and related clinicopathological aspects of three forms of the disease, J. Appl. Biochem. 3: 273–291.Google Scholar
  91. Jonas, A. J., Smith, M. L., and Schneider, J. A., 1982, ATP-dependent lysosomal cystine efflux is defective in cystinosis, J. Biol. Chem. 257: 13185–13188.PubMedGoogle Scholar
  92. Jones, M. Z., and Laine, R. A., 1981, Caprine oligosaccharide storage disease, J. Biol. Chem. 256: 51815184.Google Scholar
  93. Jonsson, L. M. V., Murray, G. J., Sorrell, S. H., Strijland, A., Aerts, J. M. F. G., Ginns, E. I., Barranger, J. A., Tager, J. M., and Schram, A. W., 1987, Biosynthesis and maturation of glucocerebrosidase in Gaucher fibroblasts, Eur. J. Biochem. 164: 171–179.PubMedCrossRefGoogle Scholar
  94. Kanfer, J. N., Legler, G., Sullivan, J., Raghavan, S. S., and Mumford, R. A., 1975, The Gaucher mouse, Biochem. Biophys. Res. Commun. 67: 85–90.PubMedCrossRefGoogle Scholar
  95. Kjellén, L., Pertoft, H., Oldberg, A., and Höök, M., 1985, Oligosaccharides generated by an endoglucuronidase are intermediates in the intracellular degradation of heparan sulfate proteoglycans, J. Biol. Chem. 260: 8416–8422.PubMedGoogle Scholar
  96. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54: 631–644.PubMedCrossRefGoogle Scholar
  97. Kornfeld, S., 1987, Trafficking of lysosomal enzymes, FASEB J. 1: 462–468.PubMedGoogle Scholar
  98. Kruse, T., Mailhammer, R., Wernecke, H., Faissner, A., Sommer, I., Goridis, C., and Schachner, M.Google Scholar
  99. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1, Nature 311: 153–155.Google Scholar
  100. Krusius, T., Finne, J., Margolis, R. K., and Margolis, R. U., 1986, Identification of an 0-glycosidic mannose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain, J. Biol. Chem. 261: 8237–8242.PubMedGoogle Scholar
  101. Krusius, T., Reinhold, V. N., Margolis, R. K., and Margolis, R. U., 1987, Structural studies on sialylated and sulphated 0-glycosidic mannose-linked oligosaccharides in the chondroitin sulphate proteoglycan of brain, Biochem. J. 245: 229–234.PubMedGoogle Scholar
  102. Kunemund, V., Jungalawala, F. B., Fischer, G., Chou, D. K. H., Keilhauer, G., and Schachner, M., 1988, The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions, J. Cell Biol. 106: 213–223.PubMedCrossRefGoogle Scholar
  103. Kuranda, M. J., and Aronson, N. N., Jr., 1985, Use of site-directed inhibitors to study in situ degradation of glycoproteins by the perfused rat liver, J. Biol. Chem. 260: 1858–1866.PubMedGoogle Scholar
  104. Kuranda, M. J., and Aronson, N. N., Jr., 1986, A di-N-acetylchitobiase activity is involved in the lysosomal catabolism of asparagine-linked glycoproteins in rat liver, J. Biol. Chem. 261: 5803–5809.PubMedGoogle Scholar
  105. Lang, L., Reitman, M. L., Tang, J., Roberts, R. M., and Kornfeld, S., 1984, Lysosomal enzyme phosphorylation: Recognition of a protein determinant allows specific phosphorylation of oligosaccharides present on lysosomal enzymes, J. Biol. Chem. 259: 14663–14671.PubMedGoogle Scholar
  106. Laurent, T. C., Fraser, J. R. E., Pertoft, H., and Smedsrod, B., 1986, Binding of hyaluronate and chondroitin sulphate to liver endothelial cells, Biochem. J. 234: 653–658.PubMedGoogle Scholar
  107. Lewis, V., Green, S. A., Marsh, M., Vihlco, P., Helenius, A., and Mellman, I., 1985, Glycoproteins of the lysosomal membrane, J. Cell Biol. 100: 1839–1847.PubMedCrossRefGoogle Scholar
  108. Li, S.-C., Sonnino, S., Tettamanti, G., and Li, Y.-T., 1988, Characterization of a non-specific activator protein for the enzymatic hydrolysis of glycolipids, J. Biol. Chem. 263: 6588–6591.PubMedGoogle Scholar
  109. Lippincott-Schwartz, J., and Fambrough, D. M., 1986, Lysosomal membrane dynamics: Structure and interorganellar movement of a major lysosomal membrane glycoprotein, J. Cell Biol. 102: 1593–1605.PubMedCrossRefGoogle Scholar
  110. Lisman, J. J. W., vanderWal, C. J., and Overdijk, B., 1985, Endo-N-acetyl-ß-D-glucosaminidase activity in rat liver, Biochem. J. 229: 379–385.PubMedGoogle Scholar
  111. Lloyd, J. B., 1986, Disulphide reduction in lysosomes, Biochem. J. 237: 271–272.PubMedGoogle Scholar
  112. Margolis, R. K., Ripellino, J. A., Goossen, B., Steinbrich, R., and Margolis, R. U., 1987, Occurrence of the HNK-1 epitope (3-sulfoglucuronic acid) in PC12 pheochromocytoma cells, chromaffin granule membranes, and chondroitin sulfate proteoglycans, Biochem. Biophys. Res. Commun. 145: 1142–1148.PubMedCrossRefGoogle Scholar
  113. Margolis, R. U., Margolis, R. K., Santella, R., and Atherton, D. M., 1972, The hyaluronidase of brain, J. Neurochem. 19: 2325–2332.PubMedCrossRefGoogle Scholar
  114. Margolis, R. U., Margolis, R. K., Chang, L. B., and Petri, C., 1975, Glycosaminoglycans of brain during development, Biochemistry 14: 85–88.PubMedCrossRefGoogle Scholar
  115. Marsh, C. A., and Gourlay, G. C., 1971, Evidence for a non-lysosomal a-mannosidase in rat liver homogenates, Biochim. Biohys. Acta 235: 142–148.CrossRefGoogle Scholar
  116. Mason, R. W., Gal, S., and Gottesman, M. M., 1987, The identification of the major excreted protein (MEP) from a transformed mouse fibroblast line as a catalytically active precursor form of cathepsin L, Biochem. J. 248: 448–454.Google Scholar
  117. McElligott, M. A., Miao, P., and Dice, J. F., 1985, Lysosomal degradation of ribonuclease A and ribonuclease S-protein microinjected into human fibroblasts, J. Biol. Chem. 260: 11986–11993.Google Scholar
  118. Mellman, I., Fuchs, R., and Helenius, A., 1986, Acidification of the endocytic and exocytic pathways, Annu. Rev. Biochem. 55: 663–700.PubMedCrossRefGoogle Scholar
  119. Mendl, P., and Tuppy, H., 1969, Kompetitive hemmung der vibro cholerae neuraminidase durch 2-deoxy-2,3-dehydro-N-acyl-neuraminnsauren, Hoppe-Seyler’s Z. Physiol. Chem. 350: 1088–1092.CrossRefGoogle Scholar
  120. Miyagi, T., and Tsuiki, S., 1985, Purification and characterization of cytosolic sialidase from rat liver, J. Biol. Chem. 260: 6710–6716.PubMedGoogle Scholar
  121. Morales, T. I., and Hascall, V. C., 1988, Correlated metabolism of proteoglycans and hyaluronic acid in bovine cartilage organ cultures, J. Biol. Chem. 263: 3632–3638.PubMedGoogle Scholar
  122. Mort, J. S., Leduc, M. S., and Recklies, A. D., 1983, Characterization of a latent proteinase from ascetic fluid as a high molecular weight form of cathepsin B, Biochim. Biophys. Acta 755: 369–375.PubMedCrossRefGoogle Scholar
  123. Nakajima, M., Irimura, T., DiFerrante, N., and Nicholson, G. L., 1984, Metastatic melanoma cell heparanase, J. Biol. Chem. 259: 2283–2290.PubMedGoogle Scholar
  124. Neufeld, E. F., and Ashwell, G., 1980, Carbohydrate recognition systems for receptor-mediated pinocytosis, in: The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennarz, ed.), pp. 241266, Plenum Press, New York.Google Scholar
  125. Oohira, A., Matsui, F., Matsuda, M., and Shoji, R., 1986, Developmental change in the glycosaminoglycan composition of the rat brain, J. Neurochem. 47: 588–593.PubMedCrossRefGoogle Scholar
  126. Opheim, D. J., and Touster, O., 1978, Lysosomal a-D-mannosidase of rat liver, J. Biol. Chem. 253: 1017–1023.PubMedGoogle Scholar
  127. Orkin, R. W., Underhill, C. B., and Toole, B. P., 1982, Hyaluronate degradation by 3T3 and simian virus-transformed 3T3 cells, J. Biol. Chem. 257: 5821–5826.PubMedGoogle Scholar
  128. Oude Elferink, R. P. j., van Doom-van Wakeren, J., Hendriks, T., Strijland, A., and Tager, J. M., 1986, Transport and processing of endocytosed lysosomal a-glucosidase in cultured human skin fibroblasts, Eur. J. Biochem. 158: 339–344.Google Scholar
  129. Overdijk, B.,van der Kroef, W. M. J., Lisman, J. J.W., Pierce, R. J., Montreuil, J.,and Spik, G., 1981, Demonstration and partial characterization of endo-N-acetyl-13-D-glucosaminidase in human tissues, FEBS Lett. 128:364–366.Google Scholar
  130. Overdijk, B., vanSteijn, G., Wolf, J. H., and Lisman, J. J. W., 1982, Purification and partial characterization of the carbohydrate structure of lysosomal N-acetyl- 3-D-hexosaminidases from bovine brain, Int. J. Biochem. 14: 25–31.PubMedCrossRefGoogle Scholar
  131. Phillips, N. C., Robinson, D., and Winchester, B. G., 1976, Characterization of human liver a-D-mannosidase purified by affinity chromatography, Biochem. J. 153: 579–587.PubMedGoogle Scholar
  132. Pierce, R. J., Spik, G., and Montreuil, J., 1979, Cytosolic location of an endo-N-acetyl-ß-Dglucosaminidase activity in rat liver and kidney, Biochem. J. 180: 673–676.PubMedGoogle Scholar
  133. Pierce, R. J., Spik, G., and Montreuil, J., 1980, Demonstration and cytosolic location of an endo-Nacetyl-13-D-glucosaminidase activity towards an asialo-N-acetyl-lactosamine-type substrate in rat liver, Biochem. J. 185: 261–264.PubMedGoogle Scholar
  134. Pisoni, R., Thoene, J. G., and Christensen, H. N., 1985, Detection and characterization of carrier-mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts, J. Biol. Chem. 260: 4791–4798.PubMedGoogle Scholar
  135. Polansky, J. R., Toole, B. P., and Gross, J., 1974, Brain hyaluronidase: Changes in activity during chick development, Science 183: 862–864.PubMedCrossRefGoogle Scholar
  136. Poltorak, M., Sadoul, R., Keilhauer, G., Landa, C., and Schachner, M., 1987, The myelin-associated glycoprotein (MAG), a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron—oligodendrocyte and oligodendrocyte—oligodendrocyte interaction, J. Cell Biol. 105: 1893–1899.PubMedCrossRefGoogle Scholar
  137. Ripellino, J. A., Margolis, R. U., and Margolis, R. K., 1988, Light and electron microscopic studies on the localization of hyaluronic acid in developing rat cerebellum, J. Cell Biol. 106: 845–855.PubMedCrossRefGoogle Scholar
  138. Rochefort, H., Capony, F., Garcia, M., Cavailles, V., Freiss, G., Chambron, M., Morriset, M., and Vignon, F., 1987, Estrogen-induced lysosomal proteases secreted by breast cancer cells: A role in carcinogenesis? J. Cell Biochem. 35: 17–29.PubMedCrossRefGoogle Scholar
  139. Rodén, L., 1980, Structure and metabolism of connective tissue proteoglycans, in: The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennarz, ed.), pp. 267–371, Plenum Press, New York.CrossRefGoogle Scholar
  140. Rosenblatt, D. S., Hosack, A., Matiaszule, N. V., Cooper, A. B., and Laframboise, R., 1985, Defect in vitamin B12 release from lysosomes: Newly described inborn error of vitamin B12 metabolism, Science 228: 1319–1321.PubMedCrossRefGoogle Scholar
  141. Roth, R. A., 1988, Structure of the receptor for insulin-like growth factor II: The puzzle amplified, Science 239: 1269–1271.PubMedCrossRefGoogle Scholar
  142. Rutishauser, U., Hoffman, S., and Edelman, G. M., 1982, Binding properties of a cell adhesion molecule from neural tissue, Proc. Natl. Acad. Sci. USA 79: 685–689.PubMedCrossRefGoogle Scholar
  143. Rutishauser, U., Watanabe, M., Silver, J., Troy, F. A., and Vimr, E. R., 1985, Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase, J. Cell Biol. 101: 1842–1849.Google Scholar
  144. Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M., and Sunshine, J., 1988, The neural cell adhesion molecule (NCAM) as a regulator of cell—cell interactions, Science 240: 53–57.PubMedCrossRefGoogle Scholar
  145. Saito, M., and Yu, R. K., 1986, Further characterization of a myelin-associated neuraminidase: Properties and substrate specificities, J. Neurochem. 47: 588–593.Google Scholar
  146. Sandhoff, K., Schwarzmann, G., Sarmientos, F., and Conzelmann, E., 1987, Fundamentals of ganglioside catabolism, in: Gangliosides and Modulation of Neuronal Functions ( H. Rahmann, ed.), pp. 231–250, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  147. Saul, R., Molyneux, R. J., and Elbein, A. D., 1984, Studies on the mechanism of castanospermine inhibition of a-and 3-glucosidase, Arch. Biochem. Biophys. 230: 668–675.PubMedCrossRefGoogle Scholar
  148. Schindler, M., Hogan, M., Miller, R., and DeGaetano, D., 1987, A nuclear-specific glycoprotein representative of a unique pattern of glycosylation, J. Biol. Chem. 262: 1254–1260.PubMedGoogle Scholar
  149. Schmidt, S. L., Fuchs, R., Male, P., and Mellman, I., 1988, Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes, Cell 52: 73–83.CrossRefGoogle Scholar
  150. Schuchman, E. H., and Desnick, R. J., 1988, Mucopolysaccharidosis Type I subtypes, J. Clin. Invest. 81: 98–105.PubMedCrossRefGoogle Scholar
  151. Schwarting, G. A., Jungalwala, F. B., Chou, D. K. H., Bayer, A. M., and Yamamoto, M., 1987, Sulfated glucuronic acid containing glycoconjugates are temporally and spatially regulated antigens in the developing mammalian nervous system, Dev. Biol. 120: 60–76.CrossRefGoogle Scholar
  152. Shashoua, V. E., Daniel, P. F., Moore, M. E., and Jungalwala, F. B., 1986, Demonstration of glucuronic acid on brain glycoproteins which react with HNK-1 antibody, Biochem. Biophys. Res. Commun. 138: 902–909.PubMedCrossRefGoogle Scholar
  153. Shin-Buehring, Y. S., Dallinger, M., Osang, M., Rahm, P., and Schaub, J., 1980, Lysosomal enzyme activities of human fetal organs during development, Biol. Neonate 38: 300–308.PubMedCrossRefGoogle Scholar
  154. Singer, H. S., Tiemeyer, M., Slesinger, P. A., and Sinnott, M. L., 1987, Inactivation of GMT-ganglioside 3-galactosidase by a specific inhibitor: A model for ganglioside storage disease, Ann. Neruol. 21: 497503.Google Scholar
  155. Smedsrod, B., Kjellen, L., and Pertoft, H., 1985, Endocytosis and degradation of chondroitin sulfate by liver endothelial cells, Biochem. J. 229: 63–71.PubMedGoogle Scholar
  156. Sokol, J. Blanchette-Mackie, J.,Kruth, H. S., Dwyer, N. K., Amende, L. M., Butler, J. D., Robinson, E., Patel, S., Brady, R. O., Comly, M. E., Vanier, M. T., and Pentchev, P. G., 1988, Type C Niemann—Pick disease, J. Biol. Chem. 263:3411–3417.Google Scholar
  157. Song, S. Z., Li, S.-C., and Li, Y.-T., 1987, Absence of endo-ß-N-acetylglucosaminidase activity in the kidneys of sheep, cattle, and pig, Biochem. J. 248: 145–149.PubMedGoogle Scholar
  158. Sweeley, C. C., and Usuki, S., 1987, The effect of a sialidase inhibitor on the cell cycle of cultured human fibroblasts, J. Cell Biol. 105: 101a.Google Scholar
  159. Tachibana, Y., Yamashita, K., and Kobata, A., 1982, Substrate specificity of mammalian endo-ß-N-acetylglucosaminidase: Study with the enzyme of rat liver, Arch. Biochem. Biophys. 214: 199–210.PubMedCrossRefGoogle Scholar
  160. Takagaki, K., Nakamura, T., Majima, M., and Endo, M., 1988, Isolation and characterization of a chondroitin sulfate-degrading 3-glucuronidase from rabbit liver, J. Biol. Chem. 263:7000–7006. Tanaka, H., and Suzuki, K., 1977, Substrate specificities of the two genetically distinct human brain 3-galactosidases, Brain Res. 122: 325–335.Google Scholar
  161. Tarentino, A. L., and Maley, F., 1969, The purification and properties of a 3-aspartyl N-cetylglucosamine amidohydrolase from hen oviduct, Arch. Biochem. Biophys. 130: 295–303.PubMedCrossRefGoogle Scholar
  162. Tong, P. Y., Tollefsen, S. E., and Kornfeld, S., 1988, The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II, J. Biol. Chem. 263: 2585–2588.PubMedGoogle Scholar
  163. Tones, C.-R., and Hart, G. W., 1984, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes, j. Biol. Chem. 259: 3308–3317.Google Scholar
  164. Townsend, R. R., Li, Y.-T., and Li, S.-C., 1979, Brain glycosidases, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 127–137, Plenum Press, New York.CrossRefGoogle Scholar
  165. Troen, B. R., Ascherman, D., Atlas, D., and Gottesman, M. M., 1988, Cloning and expression of the gene for the major excreted protein of transformed mouse fibroblasts, J. Biol. Chem. 263: 254–261.PubMedGoogle Scholar
  166. Tropea, J. E., Swank, R. T., and Segal, H. L., 1988, Effect of swainsonine on the processing and turnover of lysosomal 3-galactosidase and ß-glucuronidase from mouse peritoneal macrophages, J. Biol. Chem. 263: 4309–4317.PubMedGoogle Scholar
  167. Tulsiani, D. R. P., and Carubelli, R., 1970, Studies on the soluble and lysosomal neuraminidases of rat liver, J. Biol. Chem. 245: 1821–1827.PubMedGoogle Scholar
  168. Tulsiani, D. R. P., and Touster, 0., 1983, Swainsonine, a potent mannosidase inhibitor elevates rat liver and brain lysosomal a-n-mannosidase, decreases Golgi a-D-mannosidase II, and increases the plasma levels of several acid hydrolases, Arch. Biochem. Biophys. 224: 594–600.PubMedCrossRefGoogle Scholar
  169. Tulsiani, D. R. P., and Touster, 0., 1987, Substrate specificities of rat kidney lysosomal and cytosolic a-Dmannosidases and effects of swainsonine suggest a role of the cytosolic enzyme in glycoprotein catabolism, J. Biol. Chem. 262: 6506–6514.PubMedGoogle Scholar
  170. Tulsiani, D. R. P., Six, H., and Touster, 0., 1978, Rat liver microsomal and lysosomal 3-glucuronidases differ in both carbohydrate and amino acid compositions, Proc. Natl. Acad. Sci. USA 75: 3080–3084.PubMedCrossRefGoogle Scholar
  171. Tulsiani, D. R. P., Harris, T. M., and Touster, O., 1982, Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II, J. Biol. Chem. 257: 7936–7939.PubMedGoogle Scholar
  172. Umemoto, J., Bhavanandan, V. P., and Davidson, E. A., 1977, Purification and properties of an endo-a-D-galactosaminidase from Diplococcus pneumoniae, J. Biol. Chem. 252: 8609–8614.PubMedGoogle Scholar
  173. Usuki, S., Lyu, S.-C., and Sweeley, C. C., 1988, Sialidase activities of cultured human fibroblasts and the metabolism of GÌ„í3 ganglioside, J. Biol. Chem. 263: 6847–6853.PubMedGoogle Scholar
  174. van Diggelen, O. P., Galjaard, H., Sinnott, M. L., and Smith, P. J., 1980, Specific inactivation of lysosomal glycosidases in living fibroblasts by the corresponding glycosylmethyl-p-nitrophenyltriazenes, Biochem. J. 188: 337–343.PubMedGoogle Scholar
  175. van Diggelen, O. P., Schram, A. W., Sinnott, M. L., Smith, P. J., Robinson, D., and Galjaard, H., 1981, Turnover of 13-galactosidase in fibroblasts from patients with genetically different types of 3-galactosidase deficiencies, Biochem. J. 200: 143–151.PubMedGoogle Scholar
  176. Venerando, B., Preti, A., Lombardo, A., Cestaro, B., and Tettamanti, G., 1978, Studies on brain cytosol neuraminidase. H. Extractability, solubility and intraneuronal distribution of the enzyme in pig brain, Biochim. Biophys. Acta 527: 17–30.PubMedCrossRefGoogle Scholar
  177. Verheijen, F. W., Palmeri, Hoogeveen, A. T., and Galjaard, H., 1985, Human placental neuraminidase: Activation, stabilization, and association with 3-galactosidase and its protective protein, Eur. J. Biochem. 149: 315–321.Google Scholar
  178. Viitala, J., Carlsson, S. R., Siebert, P. D., and Fukuda, M., 1988, Molecular cloning of cDNA’s encoding a human lysosomal membrane glycoprotein with apparent Mr 120,000, Lamp A, Proc. Natl. Acad. Sci. USA 85: 3743–3747.PubMedCrossRefGoogle Scholar
  179. Volker, W., Schmidt, A., Robenek, H., and Buddecke, E., 1984, Binding and degradation of proteoglycans by cultured arterial smooth muscle cells, Eur. J. Cell Biol. 34: 110–117.PubMedGoogle Scholar
  180. von Figura, K., and Hasilik, A., 1986, Lysosomal enzymes and their receptors, Annu. Rev. Biochem. 56: 167–194.CrossRefGoogle Scholar
  181. Warner, T. G., and O’Brien, J. S., 1982, Structure analysis of the major oligosaccharides accumulating in canine GMt gangliosidosis liver, J. Biol. Chem. 257: 224–232.PubMedGoogle Scholar
  182. Westley, B. R., and May, F. E. B., 1987, Oestrogen regulates cathepsin D mRNA levels in oestrogen responsive human breast cancer cells, Nucleic Acids Res. 15: 3773–3786.PubMedCrossRefGoogle Scholar
  183. Wille, W., and Trenker, E., 1981, Changes in particulate neuraminidase activity during normal and staggerer mutant mouse development, J. Neurochem. 37: 443–446.PubMedCrossRefGoogle Scholar
  184. Winkler, J. R., and Segal, H. L., 1984a, Inhibition by swainsonine of the degradation of endocytosed glycoproteins in isolated rat liver parenchymal cells, J. Biol. Chem. 259: 1958–1962.PubMedGoogle Scholar
  185. Winkler, J. R., and Segal, H. L., 1984b, Swainsonine inhibits glycoprotein degradation by isolated rat liver lysosomes, J. Biol. Chem. 259: 15369–15372.PubMedGoogle Scholar
  186. Yanagishita, M., 1985, Inhibition of intracellular degradation of proteoglycans by leupeptin in rat ovarian granulosa cells, J. Biol. Chem. 260: 11075–11082.PubMedGoogle Scholar
  187. Yanagishita, M., and Hascall, V. C., 1984, Metabolism of proteoglycans in rat ovarian granulosa cell culture, J. Biol. Chem. 259: 10270–10283.PubMedGoogle Scholar
  188. Yanagishita, M., and Hascall, V. C., 1985, Effects of monensin on the synthesis, transport, and intracellular degradation of proteoglycans in rat ovarian granulosa cells in culture, J. Biol. Chem. 260: 5445–5455.PubMedGoogle Scholar
  189. Zanetta, J. P., Roussel, G., Dontenwill, M., and Vincendon, G., 1983, Immunohistochemical localization of a-mannosidase during postnatal development of rat cerebellum, J. Neurochem. 40: 202–208.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Larry W. Hancock
    • 1
  • Glyn Dawson
    • 1
  1. 1.Departments of Pediatrics and Biochemistry and Molecular Biology, and the Kennedy Mental Retardation Research CenterUniversity of ChicagoChicagoUSA

Personalised recommendations