Advertisement

Biosynthesis of Glycosaminoglycans and Proteoglycans

  • Nancy B. Schwartz
  • Neil R. Smalheiser

Abstract

The class of polysaccharides known as glycosaminoglycans consists of repeated disaccharides, usually containing a sulfated hexosamine and uronic acid. As abundant constituents of extracellular matrices, most work on glycosaminoglycans has focused on their roles in cartilage, bone, and synovial fluid, where they are thought to be important for tissue turgor and hydration, ion binding and buffering, and tensile strength and resiliency. Early interest in the biosynthesis of glycosaminoglycans was generated by the discovery of lysosomal storage diseases and disorders of connective tissue metabolism such as arthritis.

Keywords

Hyaluronic Acid Heparan Sulfate Chondroitin Sulfate Core Protein Sulfate Proteoglycan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R., Jerdan, J., and Hewitt, A. T., 1985, Responses of cultured neural retinal cells to substratum-bound laminin and other extracellular matrix molecules, Dey. Biol. 112: 110–114.CrossRefGoogle Scholar
  2. Anderson, M. J., and Swenarchuk, L. E., 1987, Nerve induced remodeling of basal lamina during formation of the neuromuscular junction in cell culture, Prog. Brain Res. 71: 409–421.PubMedCrossRefGoogle Scholar
  3. Appel, A., Horwitz, A. L., and Dorfman, A., 1979, Synthesis of hyaluronic acid in Marfan syndrome, J. Biol. Chem. 254: 12199–12203.PubMedGoogle Scholar
  4. Aquino, D., Margolis, R. U., and Margolis, R. K., 1984, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain, J. Cell Biol. 99: 1130–1139.PubMedCrossRefGoogle Scholar
  5. Balasubramanian, A. S., and Bachhawat, B. K., 1964, Enzyme transfer of sulfate from 3′-phosphoadenosine 5′-phosphosulfate to mucopolysaccharides in rat brain, J. Neurochem. 11: 877–881.PubMedCrossRefGoogle Scholar
  6. Balasubramanian, A. S., and Bacchawat, B. K., 1965, Formation of cerebroside sulfate from 3′ phosphoadenosine 5′-phosphosulfate in sheep brain, Biochim. Biophys. Acta 106: 218–220.PubMedCrossRefGoogle Scholar
  7. Balasubramanian, A. S., and Bacchawat, B. K., 1961, Formation of active sulfate in rat brain, J. Sci. Ind. Res. 20C: 202–204.Google Scholar
  8. Balasubramanian, A. S., Joun, N. S., and Marx, W., 1968, Sulfation of N-desulfoheparin and heparin sulfate by a purified enzyme from mastocytoma, Arch. Biochem. Biophys. 128: 623–628.PubMedCrossRefGoogle Scholar
  9. Bargiello, T. A., Saez, L., Baylies, M. K., Gasic, G., Young, M. W., and Spray, D. C., 1987, The Drosophila clock gene per affects intercellular junctional communication, Nature 328: 686–691.PubMedCrossRefGoogle Scholar
  10. Baron-Van Evercooren, A., Kleinman, H., Ohno, S., Marangos, P., Schwartz, J., and Dubois-Dalcq, M., 1982, Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures, J. Neurosci. Res. 8: 179–193.PubMedCrossRefGoogle Scholar
  11. Baylies, M., Bargiello, T., Jackson, F., and Young, M., 1987, Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock, Nature 326: 390–392.PubMedCrossRefGoogle Scholar
  12. Bird, T. A., Schwartz, N. B., and Peterkovsky, B., 1986, Mechanism for the decreased biosynthesis of cartilage proteoglycans in the scorbutic guinea pig, J. Biol. Chem. 261: 11166–11172.PubMedGoogle Scholar
  13. Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E., 1985, Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA, Proc. Natl. Acad. Sci. USA 82: 1321–1325.PubMedCrossRefGoogle Scholar
  14. Bourdon, M. A., Shiga, M., and Ruoslahti, E., 1986, Identification from cDNA of the precursor form of a chondroitin sulfate proteoglycan core protein, J. Biol. Chem. 261: 12534–12537.PubMedGoogle Scholar
  15. Bourdon, M. A., Krusius, T., Campbell, S., Schwartz, N. B., and Ruoslahti, E., 1987, Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins, Proc. Natl. Acad. Sci. USA 84: 3194–3198.PubMedCrossRefGoogle Scholar
  16. Braell, W. A., and Lodish, H. F., 1981, Biosynthesis of the erythrocyte anion transport protein, J. Biol. Chem. 256: 11337–11344.PubMedGoogle Scholar
  17. Brandt, A. E., Distler, J., and Jourdian, G. W., 1969, Biosynthesis of the chondroitin sulfate protein linkage region: Purification and properties of a glucuronosyltransferase from embryonic chick brain, Proc. Natl. Acad. Sci. USA 64: 374–378.PubMedCrossRefGoogle Scholar
  18. Brandt, A. E., Distler, J. J ., and Jourdian, G. W., 1975, Biosynthesis of chondroitin sulfate proteoglycan, J. Biol. Chem. 250: 3996–4006.Google Scholar
  19. Brennan, M. J., Oldberg, A., Ruoslahti, E., Brown, K., and Schwartz, N. B., 1983, Immunologic evidence for two distinct chondroitin sulfate proteoglycan core proteins: Differential expression in cmd mice, Dey. Biol. 98: 139–147.CrossRefGoogle Scholar
  20. Brennan, M. J., Oldberg, A., Pierschbacher, M. D., and Ruoslahti, E., 1984, Chondroitin/dermatan sulfate proteoglycan in human fetal membranes, J. Biol. Chem. 259: 13742–13750.PubMedGoogle Scholar
  21. Bunge, R. P., and Bunge, M. B., 1983, Interrelationship between Schwann cell function and extracellular matrix production, Trends Neurosci. 6: 499–503.CrossRefGoogle Scholar
  22. Burkart, T., and Weismann, U. N., 1987, Sulfated glycosaminoglycans (GAG) in the developing mouse brain, Dey. Biol. 120: 447–456.CrossRefGoogle Scholar
  23. Burkart, T., Hofmann, K., Siegrist, H. P., and Herschkowitz, N. N., 1981, Quantitative measurement of in vivo sulfatide metabolism during development of the mouse brain: Evidence for a large rapid degradatable sulfatide pool, Dey. Biol. 83: 42–48.CrossRefGoogle Scholar
  24. Burkart, T., Caimi, L., Herschkowitz, N. N., and Weismann, U. N., 1983, Metabolism of sulfogalactosyl glycerolipids in the myelinating mouse brain, Dey. Biol. 98: 182–186.CrossRefGoogle Scholar
  25. Burnell, J. N., and Roy, A. B., 1978, Purification and properties of the ATP sulfurylase of rat liver, Biochim. Biophys. Acta 527: 239–248.PubMedCrossRefGoogle Scholar
  26. Campbell, S. C., and Schwartz, N. B., 1988, Kinetics of intracellular processing of chondroitin sulfate proteoglycan core protein and other matrix components, J. Cell Biol. 106: 2191–2202.PubMedCrossRefGoogle Scholar
  27. Carey, D. J., Rafferty, C., and Todd, M., 1987, Effects of inhibition of proteoglycan synthesis on the differentiation of cultured rat Schwann cells, J. Cell Biol. 105: 1013–1021.PubMedCrossRefGoogle Scholar
  28. Castejón, H. V., 1970, Histochemical demonstration of acid glycosaminoglycans in the nerve cell cytoplasm of mouse central nervous system, Acta Histochem. 35: 161–172.PubMedGoogle Scholar
  29. Castellot, J. J., Jr., Choay, J., Lormeau, J.-C., Petitou, M., Sache, E., and Kamovsky, M., 1986, Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. II. Evidence for a pentasaccharide sequence that contains a 3-O-sulfate group, J. Cell Biol. 102: 1979–1984.PubMedCrossRefGoogle Scholar
  30. Chiquet, M., and Fambrough, D., 1984, Chick myotendinous antigen. II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits, J. Cell Biol. 98: 1937–1946.PubMedCrossRefGoogle Scholar
  31. Choay, J., Petitou, M., Lormeau, J., Sinay, P., Casu, B., and Gatti, G., 1983, Structure—activity relationship in heparin: A synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity, Biochem. Biophys. Res. Commun. 116: 492–499.PubMedCrossRefGoogle Scholar
  32. Chopra, R. K., Pearson, C. H., Pringle, G. A., Fackre, D. S., and Scott, P. G., 1985, Dermatan sulfate is located on serine-4 of bovine proteodermatan sulfate, Biochem. J. 232: 277–279.PubMedGoogle Scholar
  33. Chun, J. J. M., and Shatz, C. J., 1988, A fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons, J. Cell Biol. 106: 857–872.PubMedCrossRefGoogle Scholar
  34. Cole, G., and Glaser, L., 1986, A heparin-binding domain from N-CAM is involved in neural cell—substratum adhesion, J. Cell Biol. 102: 403–412.PubMedCrossRefGoogle Scholar
  35. Cooper, A. R., and MacQueen, H. A., 1983, Subunits of laminin are differentially synthesized in mouse eggs and early embryos, Dey. Biol. 96: 467–471.CrossRefGoogle Scholar
  36. Crossin, K., Hoffmann, B., Grumet, S., Thiery, J.-P., and Edelman, G., 1986, Site-restricted expression of cytotactin during development of the chicken embryo, J. Cell Biol. 102: 1917–1930.PubMedCrossRefGoogle Scholar
  37. Davis, G., Varon, S., Engvall, E., and Manthorpe, M., 1985, Substratum-binding neurite-promoting factors: Relationships to laminin, Trends Neurosci. 8: 528–532.CrossRefGoogle Scholar
  38. Day, A., Ramis, C., Fisher, I., Gehron-Robey, P., Termine, J., and Young, M., 1986, Characterization of bone PGII cDNA and its relationship to PGII mRNA from other connective tissues, Nucleic Acids Res. 14: 9861–9876.PubMedCrossRefGoogle Scholar
  39. Day, A. A., McQuillan, C. I., Termine, J. O., and Young, M. R., 1987, Molecular cloning and sequence analysis of the cDNA for small proteoglycan II of bovine bone, Biochem. J. 248: 801–805.PubMedGoogle Scholar
  40. De, K. K., Yamamoto, K., and Whistler, R. L., 1978, Enzymatic formation and hydrolysis of polysaccharide sulfates, ACS Symp. Ser. 77: 121–147.CrossRefGoogle Scholar
  41. Delpech, A., Girard, N., and Delpech, B., 1982, Location of hyaluronectin in the nervous system, Brain Res. 245: 251–257.PubMedCrossRefGoogle Scholar
  42. Doege, K., Fernandez, P., Hassell, J., Sasaki, M., and Yamada, Y., 1986, Partial cDNA sequence encoding a globular domain at the C terminus of the rat cartilage proteoglycan, J. Biol. Chem. 261: 8108–8111.PubMedGoogle Scholar
  43. Doege, K., Sasaki, M., Horigan, E., Hassell, J., and Yamada, Y., 1987, Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones, J. Biol. Chem. 262: 1775717767.Google Scholar
  44. Dorfman, A., and Ho, P.-L., 1970, Synthesis of acid mucopolysaccharides by glial tumor cells in tissue culture, Proc. Natl. Acad. Sci. USA 66: 495–499.PubMedCrossRefGoogle Scholar
  45. Dziadek, M., and Timpl, R., 1985, Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells, Dey. Biol. 111: 372–382.CrossRefGoogle Scholar
  46. Dziadek, M., Fujiwara, S., Paulsson, M., and Timpl, R., 1985, Immunological characterization of basement membrane types of heparan sulfate proteoglycan, EMBO J. 4: 905–912.PubMedGoogle Scholar
  47. Easter, S., Bratton, B., and Scherer, S., 1984, Growth related order of the retinal fiber layer in goldfish, J. Neurosci. 4: 2173–2190.PubMedGoogle Scholar
  48. Edgar, D., Timpl, R., and Thoenen, H., 1983, The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival, EMBO J. 3: 1463–1468.Google Scholar
  49. Ekblom, P., Alitalo, K., Vaheri, A., Timpl, R., and Saxen, L., 1980, Induction of a basement membrane glycoprotein in embryonic kidney: Possible role of laminin in morphogenesis, Proc. Natl. Acad. Sci. USA 77: 485–489.PubMedCrossRefGoogle Scholar
  50. Esko, J. D., Stewart, T., and Taylor, W., 1985, Animal cell mutants defective in glycosaminoglycan biosynthesis, Proc. Natl. Acad. Sci. USA 82: 3197–3201.PubMedCrossRefGoogle Scholar
  51. Esko, J., Elgavish, A., Prasthofer, T., Taylor, W., and Weinke, J., 1986, Sulfate transport-deficient mutants of CHO cells, J. Biol. Chem. 261: 15725–15733.PubMedGoogle Scholar
  52. Esko, J. D., Weinke, J., Taylor, W., Ekborg, G., Roden, L., Anantharamaiah, G., and Gawish, A., 1987, Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I, J. Biol. Chem. 262: 12189–12195.PubMedGoogle Scholar
  53. Fahrig, T., Landa, C., Pesheva, P., Kuhn, K., and Schachner, M., 1987, Characterization of binding properties of the myelin-associated glycoprotein to extracellular matrix constituents, EMBO J. 6: 2875–2883.Google Scholar
  54. Fedarko, N., and Conrad, H., 1986, A unique heparan sulfate in the nuclei of hepatocytes: Structural changes with the growth state of the cells, J. Cell Biol. 102: 587–599.PubMedCrossRefGoogle Scholar
  55. Fellini, S. A., Kimura, J. H., and Hascall, V. C., 1984, Localization of proteoglycan core protein in subcellular fractions isolated from rat chondrosarcoma chondrocytes, J. Biol. Chem. 259:4634–4641. Fransson, L.-A., Haysmark, B., and Sheehan, J., 1981, Self-association of heparan sulfate, J. Biol. Chem. 256: 13039–13043.Google Scholar
  56. Galligani, L., Hopwood, J., Schwartz, N. B., and Dorfman, A., 1975, Stimulation of synthesis of freeGoogle Scholar
  57. chondroitin sulfate chains by 3-D-xylosides in cultured cells, J. Biol. Chem. 250:5400–5406.Google Scholar
  58. Gallo, V., Bertolotto, A., and Levi, G., 1987, The proteoglycan chondroitin sulfate is present in a subpopulation of cultured astrocytes and in their precursors, Dev. Biol. 123: 282–285.PubMedCrossRefGoogle Scholar
  59. Geetha-Habib, M., Campbell, S., and Schwartz, N. B., 1984, Subcellular localization of the synthesis and glycosylation of chondroitin sulfate proteoglycan core protein, J. Biol. Chem. 259: 7300–7310.PubMedGoogle Scholar
  60. Geller, D., Henry, J., Belch, J., and Schwartz, N. B., 1987, Co-purification and characterization of ATPsulfurylase and adenosine-5′-phosphosulfate kinase from rat chondrosarcoma, J. Biol. Chem. 262: 7374–7382.PubMedGoogle Scholar
  61. Glaser, L., and Brown, D. H., 1955, The enzymatic synthesis in vitro of hyaluronic acid chains, Proc. Natl. Acad. Sci. USA 41: 253–260.PubMedCrossRefGoogle Scholar
  62. Gloor, S., Odink, K., Guenther, J., Nick, H., and Monard, D., 1986, A glia-derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins, Cell 47: 687–693.PubMedCrossRefGoogle Scholar
  63. Glössl, J., Beck, M., and Kresse, H., 1984, Biosynthesis of proteodermatan sulfate in cultured human fibroblasts, J. Biol. Chem. 259: 14144–14150.PubMedGoogle Scholar
  64. Gordon, H., Sample, S., and Hall, Z., 1987, Genetic variants of the C2 muscle cell line defective in glycosaminoglycan biosynthesis, J. Cell Biol. 105: 199a.CrossRefGoogle Scholar
  65. Gospodarowicz, D., and Neufeld, G., 1987, Fibroblast growth factor: Molecular and biological properties, in: Mesenchymal—Epithelial Interactions in Neural Development ( J. K. Wolff, J. Sievers, and M. Berry, eds.), pp. 191–222, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  66. Gregory, J. D., and Lipmann, F., 1957, The transfer of sulfate among phenolic compounds with 3’,5’- diphosphoadenosine as coenzyme, J. Biol. Chem. 229: 1081–1089.PubMedGoogle Scholar
  67. Grey, H. M., and Chesnut, R., 1985, Antigen processing and presentation to T cells, Immunol. Today 6: 101–106.CrossRefGoogle Scholar
  68. Guenther, J., Nick, H., and Monard, D., 1985, A glia-derived neurite promoting factor with protease inhibitory activity, EMBO J. 4: 1963–1966.PubMedGoogle Scholar
  69. Guha, A., Northover, B. J., and Bachhawat, B. K., 1960, Incorporation of radioactive sulfate into chondroitin sulfate in the developing brain of rats, J. Sci. Ind. Res. C19: 287–289.Google Scholar
  70. Gundersen, R., 1987, Response of sensory neuntes and growth cones to patterned substrata of laminin and fibronectin in vitro, Dev. Biol. 121: 423–431.PubMedCrossRefGoogle Scholar
  71. Halfter, W., Reckhaus, W., and Kroger, S., 1987, Nondirected axonal growth on basal lamina from avian embryonic neural retina, J. Neurosci. 7: 3712–3722.PubMedGoogle Scholar
  72. Hall, J., and Rosbash, M., 1988, Mutations and molecules influencing biological rhythms, Annu. Rev. Neurosci. 11: 373–393.PubMedCrossRefGoogle Scholar
  73. Hampson, I. N., Kumar, S., and Gallagher, J., 1983, Differences in the distribution of 0-sulphate groups of cell-surface and secreted heparan sulphate produced by human neuroblastoma cells in culture, Biochim. Biophys. Acta 763: 183–190.PubMedCrossRefGoogle Scholar
  74. Hantaz-Ambroise, D., Vigny, M., and Koenig, J., 1987, Heparan sulfate proteoglycan and laminin mediate two different types of neurite outgrowth, J. Neurosci. 7: 2293–2304.PubMedGoogle Scholar
  75. Hart, C. W., 1978, Sulfotransferase levels in developing cornea, J. Biol. Chem. 253: 347–353.PubMedGoogle Scholar
  76. Hascall, V. C., and Riolo, R. L., 1972, Characteristics of the protein—keratan sulfate core and of keratin sulfate prepared from bovine nasal cartilage proteoglycan, J. Biol. Chem. 247: 4529–4538.PubMedGoogle Scholar
  77. Hassell, J. R., Kimura, J. H., and Hascall, V. C., 1986, Proteoglycan core families, Annu. Rev. Biochem. 55: 539–568.PubMedCrossRefGoogle Scholar
  78. Hedgecock, E., Culotti, J., Hall, D., and Stern, B., 1987, Genetics of cell and axon migrations in C. elegans, Development 100: 365–382.PubMedGoogle Scholar
  79. Henkart, P., Humphreys, S., and Humphreys, T., 1973, Characterization of sponge aggregation factor; a unique proteoglycan complex, Biochemistry 12: 3045–3052.PubMedCrossRefGoogle Scholar
  80. Hirsch, M. R., Wietzerbin, J., Pierres, M., and Goridis, C., 1983, Expression of Ia antigens by cultured astrocytes treated with gamma-interferon, Neurosci. Lett. 41: 199–204.PubMedCrossRefGoogle Scholar
  81. Ho, K.-L., Chang, C.-H., Yang, S., and Chason, J., 1984, Neuropathologic findings in thanatophoric dysplasia, Acta Neuropathol. 63: 218–228.PubMedCrossRefGoogle Scholar
  82. Hoffman, H-P., Schwartz, N. B., Rodén, L., Prockop, D., 1984, Localization of xylosyltransferase in the cisterna of the rough endoplasmic reticulum, Connect. Tissue Res. 12: 151–163.CrossRefGoogle Scholar
  83. Hoffman, S., and Edelman, G., 1987, A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin, Proc. Natl. Acad. Sci. USA 84: 2523–2527.PubMedCrossRefGoogle Scholar
  84. Inestrosa, N. C., Matthew, W., Reiness, C., Hall, Z., and Reichardt, L., 1985, Atypical distribution of asymmetric acetylcholinesterase in mutant PC12 pheochromocytoma cells lacking a cell surface heparan sulfate proteoglycan, J. Neurochem. 45: 86–94.PubMedCrossRefGoogle Scholar
  85. Ishihara, M., Fedarko, N., and Conrad, H., 1986, Transport of heparan sulfate into the nuclei of hepatocytes, J. Biol. Chem. 261: 13575–13580.PubMedGoogle Scholar
  86. Ishihara, M., Fedarko, N., and Conrad, H., 1987, Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparan sulfate metabolism and hepatocyte growth, J. Biol. Chem. 262: 4708–4716.PubMedGoogle Scholar
  87. Jackson, F. R., Bargiello, T. A., Yun, S., and Young, M. W., 1986, Product of per locus of Drosophila shares homology with proteoglycans, Nature 320: 185–188.PubMedCrossRefGoogle Scholar
  88. Jacobsson, I., Backstrom, G., Höök, M., Lindahl, U., Feingold, D. S., Malmström, A., and Rodén, L., 1979, Biosynthesis of heparin: Assay and properties of the microsomal uronosyl C-5 epimerase, J. Biol. Chem. 254: 2975–2979.PubMedGoogle Scholar
  89. Jalkanen, M., Rapraeger, A., and Bernfield, M., 1988, Mouse mammary epithelial cells produced basement membrane and cell surface proteoglycans containing distinct core proteins, J. Cell Biol. 106: 953–962.PubMedCrossRefGoogle Scholar
  90. Jansson, L., Höök, M., Wasteson, A., and Lindahl, U., 1975, Biosynthesis of heparin. V. Solubilization and partial characterization of N- and O-sulphotransferases, Biochem. J. 149: 49–55.PubMedGoogle Scholar
  91. Jourdian, G. W., 1979, Biosynthesis of glycosaminoglycans, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 103–126, Plenum Press, New York.CrossRefGoogle Scholar
  92. Kanwar, Y. S., Rosenzweig, L., and Jakubowski, M., 1986, Xylosylated-proteoglycan-induced Golgialterations, Proc. Natl. Acad. Sci. USA 83: 6499–6503.PubMedCrossRefGoogle Scholar
  93. Keller, K. L., Keller, J., and Moy, J., 1980, Heparan sulfates from Swiss mouse 3T3 and SV3T3 cells: O-Sulfate difference, Biochemistry 19: 2529–2536.PubMedCrossRefGoogle Scholar
  94. Keller, R., and Furthmayr, H., 1986, Isolation and characterization of basement membrane and cell proteoheparan sulphates from HR9 cells, Eur. J. Biochem. 161: 707–714.PubMedCrossRefGoogle Scholar
  95. Kimata, K., Okayama, M., Oohira, A., and Suzuki, S., 1973, Cytodifferentiation and proteoglycan biosynthesis, Mol. Cell. Biochem. 1: 211–228.PubMedCrossRefGoogle Scholar
  96. Kimata, K., Barrach, H., Brown, K. S., and Pennypacker, J. P., 1981, Absence of proteoglycan core protein in cartilage from the cmd/cmd (cartilage matrix deficiency) mouse, J. Biol. Chem. 256: 6961–6968.PubMedGoogle Scholar
  97. Kimura, J. H., Thomas, E. J., Hascall, V. C., Reiner, H., and Poole, A. R., 1981, Identification of core protein; an intermediate in proteoglycan biosynthesis in culture chondrocytes from the Swarm rat chondrosarcoma, J. Biol. Chem. 250: 7890–7897.Google Scholar
  98. Kimura, J. H., Lolunander, L. S., and Hascall, V. C., 1984, Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the Swarm rat chondrosarcoma, J. Cell Biochem. 26: 261–278.PubMedCrossRefGoogle Scholar
  99. Kleinman, H., McGarvey, M., Hassell, J., Star, V., Cannon, F., Laurie, G., and Martin, G., 1986, Basement membrane complexes with biological activity, Biochemistry 25: 312–318.PubMedCrossRefGoogle Scholar
  100. Krayanek, S., 1980, Structure and orientation of extracellular matrix in developing chick optic tectum, Anat. Rec. 197: 95–109.PubMedCrossRefGoogle Scholar
  101. Krayanek, S., and Goldberg, S., 1981, Oriented extracellular channels and axonal guidance in the embryonic chick retina, Dev. Biol. 84: 41–50.PubMedCrossRefGoogle Scholar
  102. Krueger, R. C., and Schwartz, N. B., 1988, Investigation of a large chondroitin sulfate proteoglycan from embryonic chick brain, 4th Int. Congr. Cell Biol., accepted.Google Scholar
  103. Krueger, R., Olson, C. A., and Schwartz, N. B., 1985, Deglycosylation of proteoglycan by hydrogen fluoride in pyridine, Anal. Biochem. 146: 232–237.PubMedCrossRefGoogle Scholar
  104. Krusius, T., and Ruoslahti, E., 1986, Primary structure for extracellular matrix proteoglycan core protein deduced from cloned cDNA, Proc. Natl. Acad. Sci. USA 83: 7683–7687.PubMedCrossRefGoogle Scholar
  105. Kunemund, V., Jungalwala, F. B., Fischer, G., Chou, D. K. H., Keilhauer, G., and Schachner, M., 1988, The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions, J. Cell Biol. 106: 213–223.PubMedCrossRefGoogle Scholar
  106. Lark, M., Laterra, J., and Culp, L., 1985, Close and focal contact adhesions of fibroblasts to a fibronectincontaining matrix, Fed. Proc. 44: 394–403.PubMedGoogle Scholar
  107. Leivo, I., Vaheri, A., Timpl, R., and Wartiovaara, J., 1980, Appearance and distribution of collagens and laminin in the early mouse embryo, Dev. Biol. 76: 100–114.PubMedCrossRefGoogle Scholar
  108. Lindahl, U., Feingold, D., and Rodén, L., 1986, Biosynthesis of heparin, Trends Biochem. Sci. 11: 221–225.CrossRefGoogle Scholar
  109. Liu, X., Lorenz, L., Yu, Q., Hall, J. C., and Rosbash, M., 1988, Spatial and temporal expression of the period gene in Drosophila melanogaster, Genes Dev. 2: 228–238.PubMedCrossRefGoogle Scholar
  110. Majack, R. A., Cook, S., and Bornstein, P., 1986, Control of smooth muscle cell growth by components of the extracellular matrix: Autocrine role for thrombospondin, Proc. Natl. Acad. Sci. USA 83: 9050–9054.PubMedCrossRefGoogle Scholar
  111. Malmström, A., and ()berg, L., 1981, Biosynthesis of dermatan sulfate. Assay and properties of the uronosyl C-5 epimerase, Biochem. J. 201: 489–493.Google Scholar
  112. Malmström, A., Fransson, L. A., Höök, M., and Lindahl, U., 1975, Biosynthesis of dermatan sulfate. I. Formation of L-iduronic acid residues, J. Biol. Chem. 250: 3419–3425.PubMedGoogle Scholar
  113. Malmström, A., Rodén, L., Feingold, D., Jacobsson, I., Backström, G., Höök, M., and Lindahl, U., 1980, Biosynthesis of heparin. Partial purification of the uronosyl C-5 epimerase, J. Biol. Chem. 255: 3878–3883.Google Scholar
  114. Margolis, R. K., and Margolis, R. U., 1979, Structure and distribution of glycoproteins and glycosaminoglycans, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 45–73, Plenum Press, New York.CrossRefGoogle Scholar
  115. Margolis, R. K., Salton, S., and Margolis, R., 1987, Effects of nerve growth factor-induced differentiation on the heparan sulfate of PC12 pheochromocytoma cells and comparison with developing brain, Arch. Biochem. Biophys. 257: 107–114.PubMedCrossRefGoogle Scholar
  116. Margolis, R. U., Aquino, D. A., Klinger, M. M., Ripellino, J. A., and Margolis, R. K., 1986, Structure and localization of nervous tissue proteoglycans, Ann. N.Y. Acad. Sci. 481: 46–54.PubMedCrossRefGoogle Scholar
  117. Markovitz, A., Cifonelli, J. A., and Dorfman, A., 1959, The biosynthesis of hyaluronic acid by group A streptococcus. VI. Biosynthesis from uridine nucleotides in cell-free extracts, J. Biol. Chem. 234: 2343–2350.PubMedGoogle Scholar
  118. Melvin, T., and Schwartz, N. B., 1988, Pathol. Immunopathol. Res. 7: 68–72.PubMedCrossRefGoogle Scholar
  119. Mian, N., 1986, Characterization of a high Mw plasma membrane bound protein and assessment of its role as a constituent of hyaluronate synthase complex, Biochem. J. 237: 343–357.PubMedGoogle Scholar
  120. Miller, R. R., and Waechter, C. J., 1988, Partial purification and characterization of detergent solubilizedGoogle Scholar
  121. N-sulfotransferase activity associated with calf brain microsomes, J. Neurochem. 51:87–94. Mitchell, D., and Hardingham, T., 1981, The effects of cycloheximide on the biosynthesis and secretion of proteoglycans by chondrocytes in culture, Biochem. J. 196:521–529.Google Scholar
  122. Nakanishi, S., 1983, Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mutant mice, Dev. Biol. 95: 305–316.PubMedCrossRefGoogle Scholar
  123. Neufeld, E. F., and Hall, C. W., 1965, Inhibition of UDP-D-glucose dehydrogenase by UDP-D-xylose: a possible regulatory mechanism, Biochem. Biophys. Res. Commun. 19: 456–460.PubMedCrossRefGoogle Scholar
  124. Ng, K., and Schwartz, N. B., 1987, Solubilization of hyaluronate synthetase activity from oligodendroglioma, IXth International Conference on Glycoconjugates B55.Google Scholar
  125. Noonan, D. M., Horigan, E. A., Ledbetter, S. P., Vogeli, G., Sasaki, M., Yamada, Y., and Hassell, J. R., 1988, Identification of cDNA clones encoding different domains of the basement membrane heparan sulfate proteoglycan, J. Biol. Chem. 263: 16379–16387.PubMedGoogle Scholar
  126. Norling, B., Glimelius, B., and Wasteson, A., 1984, A chondroitin sulphate proteoglycan from human cultured glial and glioma cells, Biochem. J. 221: 845–853.PubMedGoogle Scholar
  127. Nuweyhid, N., Glaser, J. H., Johnson, J. C., Conrad, H. E., Hauser, S. C., and Hirschberg, C. B., 1986, Xylosylation and glucuronsylation reactions in rat liver Golgi apparatus and endoplasmic reticulum, J. Biol. Chem. 261: 12936–12941.Google Scholar
  128. Oegema, T. R., Kraft, E. L., Jourdian, G. W., and van Valen, T. R., 1984, Phosphorylation of chondroitin sulfate in proteoglycans from the Swarm rat chondrosarcoma, J. Biol. Chem. 259: 1720–1726.PubMedGoogle Scholar
  129. Ogren, S., and Lindahl, U., 1975, Cleavage of macromolecular heparin by enzymes from mouse mastocytoma, J. Biol. Chem. 250: 2690–2695.PubMedGoogle Scholar
  130. Oldberg, A., Hayman, E. G., and Ruoslahti, E., 1981, Isolation of a chondroitin sulfate proteoglycan from a rat yolk sac tumor and immunochemical demonstration of its cell surface localization, J. Biol. Chem. 256: 10847–10852.PubMedGoogle Scholar
  131. Oldberg, A., Antonsson, P., and Heinegârd, D., 1987, The partial amino acid sequence from cartilage proteoglycan, deduced from a cDNA clone, contains numerous Ser-Gly sequences arranged in homologous repeats, Biochem. J. 243: 255–259.PubMedGoogle Scholar
  132. Patterson, P. H., 1985, On the role of proteases, their inhibitors and the extracellular matrix in promoting neurite outgrowth, J. Physiol. (Paris) 80: 207–211.Google Scholar
  133. Pearson, C. H., Winterbottom, N., Fachre, D. S., Scott, P. G., and Carpenter, M. R., 1983, The NH2 terminal amino acid sequence of bovine skin proteodermatan sulfate, J. Biol. Chem. 258: 15101–15104.PubMedGoogle Scholar
  134. Pejler, G., Backström, G., and Lindahl, U., 1987, Structure and affinity for antithrombin of heparan sulfateGoogle Scholar
  135. chains derived from basement membrane proteoglycans, J. Biol. Chem. 262:5036–5043.Google Scholar
  136. Philipson, L. H., and Schwartz, N. B., 1984, Subcellular localization of hyaluronate synthetase in oligodendroglioma cells, J. Biol. Chem. 259: 5017–5023.PubMedGoogle Scholar
  137. Philipson, L. H., Westley, J., and Schwartz, N. B., 1985, The effect of hyaluronidase treatment of intact cells on hyaluronate synthetase activity, Biochemistry 24: 7899–7906.Google Scholar
  138. Pixley, S. K. R., and Cotman, C., 1986, Laminin supports short-term survival of rat septal neurons in low density, serum-free cultures, J. Neurosci. Res. 15: 1–17.Google Scholar
  139. Prehm, P., 1983a, Synthesis of hyaluronate in differentiated teratocarcinoma cells. Characterization of the synthease, Biochem. J. 220: 191–198.Google Scholar
  140. Prehm, P., 1983b, Synthesis of hyaluronate in differentiated teratocarcinoma cells. Mechanism of chain growth, Biochem. J. 211: 181–189.PubMedGoogle Scholar
  141. Prehm, P., 1984, Hyaluronate is synthesized at plasma membranes, Biochem. J. 220: 597–600.PubMedGoogle Scholar
  142. Prehm, P., and Mausolf, A., 1986, Isolation of streptococcal hyaluronate synthase, Biochem. J. 235: 887889.Google Scholar
  143. Radoff, S., and Danishefsky, I., 1984, Location on heparin of the oligosaccharide section essential for anticoagulant activity, J. Biol. Chem. 259: 166–172.PubMedGoogle Scholar
  144. Ramóm y Cajal, S., 1984, The Neuron and the Glial Cell, p. 265, Thomas, Springfield, Ill.Google Scholar
  145. Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., and Bernfield, M., 1985, The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparin sulfate glycosamino-glycans, J. Biol. Chem. 260: 11046–11052.PubMedGoogle Scholar
  146. Ratner, N., Bunge, R., and Glaser, L., 1985, A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation, J. Cell Biol. 101: 744–754.PubMedCrossRefGoogle Scholar
  147. Reddy, R., Zehring, W., Wheeler, D., Pirrotta, V., Hadfield, C., Hall, J., and Rosbash, M., 1986, Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms, Cell 38: 701–710.CrossRefGoogle Scholar
  148. Richardson, R. R., 1985, Congenital genetic murine (ch) hydrocephalus: A structural model of cellular dysplasia and disorganization with the molecular locus of deficient proteoglycan synthesis, Child’s Nerv. Syst. 1:87–99.Google Scholar
  149. Rieger, F., Daniloff, J. Pincon-Raymond, M., Crossin, K., Grumet, M., and Edelman, G., 1986, Neuronal cell adhesion molecules and cytotactin are colocalized at the node of Ranvier, J. Cell Biol. 103:379391.Google Scholar
  150. Riesenfeld, J., Höök, M., and Lindahl, U., 1982, Biosynthesis of heparin. Concerted action of early polymer-modification reactions, J. Biol. Chem. 257: 421–425.PubMedGoogle Scholar
  151. Riggott, M., and Moody, S., 1987, Distribution of laminin and fibronectin along peripheral trigeminal axon pathways in the developing chick, J. Comp. Neurol. 258: 580–596.PubMedCrossRefGoogle Scholar
  152. Ripellino, J. A., Bailo, M., Margolis, R. U., and Margolis, R. K., 1988, Light and electronmicroscopic studies on the localization of hyaluronic acid in developing rat cerebellum, J. Cell Biol. 106: 845–855.PubMedCrossRefGoogle Scholar
  153. Robinson, H. C., Horner, A. A., Höök, M., Ogren, S., and Lindahl, U., 1978, A proteoglycan form of heparin and its degradation to single-chain molecules, J. Biol. Chem. 253: 6687–6693.PubMedGoogle Scholar
  154. Robinson, J., Viti, M., and Höök, M., 1984, Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line, J. Cell Biol. 98: 946–953.PubMedCrossRefGoogle Scholar
  155. Rodén, L., 1980, Structure and metabolism of connective tissue proteoglycans, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. Lennarz, ed.), pp. 267–314, Plenum Press, New York.CrossRefGoogle Scholar
  156. Rodén, L., Baker, J. R., Helting, T., Schwartz, N. B., Stoolmiller, A., Yamagata, S., and Yamagata, T., 1972, Biosynthesis of chondroitin sulfate, Methods Enzymol. 28: 638–676.CrossRefGoogle Scholar
  157. Rodén, L., Koerner, T., Olsen, C., and Schwartz, N. B., 1985, Mechanisms of chain initiation in the biosynthesis of connective tissue polysaccharides, Fed. Proc. 44: 373–389.PubMedGoogle Scholar
  158. Rogers, S., Edson, K., Letourneau, P., and McLoon, S., 1986, Distribution of laminin in the developing peripheral nervous system of the chick, Dev. Biol. 113: 429–435.PubMedCrossRefGoogle Scholar
  159. Rosamond, S., Brown, L., Gomez, C., Braciale, T. J., and Schwartz, B. D., 1987, Xyloside inhibits synthesis of the class II-associated chondroitin sulfate proteoglycan and antigen presentation events, J. lmmunol. 139: 1946–1951.Google Scholar
  160. Rosenberg, R. D., 1985, Role of heparin and heparinlike molecules in thrombosis and atherosclerosis, Fed. Proc. 44: 404–409.PubMedGoogle Scholar
  161. Sai, S., Tanaka, T., Kosher, R. A., and Tanzer, M. C., 1986, Cloning and sequence analysis of a partial cDNA for chicken cartilage proteoglycan core protein, Proc. Natl. Acad. Sci. USA 83: 5081–5085.Google Scholar
  162. Sanes, J., 1983, Roles of extracellular matrix in neural development, Annu. Rev. Physiol. 45:581–600. Schubert, D., 1984, Developmental Biology of Cultured Nerve, Muscle, and Glia, Academic Press, New York.Google Scholar
  163. Schubert, D., and LaCorbiere, M., 1980a, Altered collagen and glycosaminoglycan secretion by a skeletal muscle myoblast variant, J. Biol. Chem. 255:11557–11563.Google Scholar
  164. Schubert, D., and LaCorbiere, M., 1980b, Role of a 16S glycoprotein complex in cellular adhesion, Proc. Natl. Acad. Sci. USA 77: 4137–4141.PubMedCrossRefGoogle Scholar
  165. Schubert, D., and LaCorbiere, M., 1982a, The specificity of extracellular glycoprotein complexes in mediating cellular adhesion, J. Neurosci. 2: 82–89.PubMedGoogle Scholar
  166. Schubert, D., and LaCorbiere, M., 1982b, Properties of extracellular adhesion-mediating particles in myoblast clone and its adhesion-deficient variant, J. Cell Biol. 94: 108–114.PubMedCrossRefGoogle Scholar
  167. Schubert, D., and LaCorbiere, M., 1985, Isolation of a cell-surface receptor for chick neural retina ad-herons, J. Cell Biol. 100: 56–63.PubMedCrossRefGoogle Scholar
  168. Schubert, D., LaCorbiere, M., Klier, F., and Birdwell, C., 1983a, A role for adherons in neural retina cell adhesion, J. Cell Biol. 96: 990–998.PubMedCrossRefGoogle Scholar
  169. Schubert, D., LaCorbiere, M., Klier, F., and Birdwell, C., 1983b, The structure and function of myoblast adherons, Cold Spring Harbor Symp. Quant. Biol. 48: 539–549.PubMedCrossRefGoogle Scholar
  170. Schubert, D., LaCorbiere, M., and Esch, F., 1986, A chick neural retina adhesion and survival molecule is a retinol-binding protein, J. Cell Biol. 102: 2295–2301.PubMedCrossRefGoogle Scholar
  171. Schwartz, N. B., 1975, Biosynthesis of chondroitin sulfate: Immunoprecipitation of interacting xylosyltransferase and galactosyltransferase, FEBS Lett. 49: 342–345.PubMedCrossRefGoogle Scholar
  172. Schwartz, N. B., 1976, Biosynthesis of chondroitin sulfate: Role of phospholipids in the activity of UDP-Dgalactose:D-xylose galactosyltransferase, J. Biol. Chem. 251: 285–292.PubMedGoogle Scholar
  173. Schwartz, N. B., 1977, Regulation of chondroitin sulfate proteoglycan chondroitin sulfate chains and core protein, J. Biol. Chem. 252: 6316–6321.PubMedGoogle Scholar
  174. Schwartz, N. B., 1979, Synthesis and secretion of an altered chondroitin sulfate proteoglycan, J. Biol. Chem. 254: 2272–2277.Google Scholar
  175. Schwartz, N. B, 1982, Regulatory mechanisms in proteoglycan biosynthesis, in: Glycosaminoglycans and Proteoglycans in Physiological and Pathologic Processes of Body Systems ( R. S. Varma and R. Vanua, eds.), pp. 41–54, Karger, Basel.Google Scholar
  176. Schwartz, N. B., 1986, Carbohydrate metabolism II: Special pathways, in: Mammalian Biochemistry ( T. M. Devlin, ed.), pp. 406–437, Wiley, New York.Google Scholar
  177. Schwartz, N. B., and Dorfman, A., 1975, Purification of rat chondrosarcoma xylosyltransferase, Arch. Biochem. 171: 136–144.PubMedCrossRefGoogle Scholar
  178. Schwartz, N. B., and Rodén, L., 1974a, Biosynthesis of chondroitin sulfate: Interaction between xylosyltransferase and galactosyltransferase, Biochem. Biophys. Res. Commun. 56: 717–724.PubMedCrossRefGoogle Scholar
  179. Schwartz, N. B., and Rodén, L., 1974b, Biosynthesis of chondroitin sulfate: Purification of UDP-Dxylose:core protein 13-D-xylosyltransferase by affinity chromatography, Carbohydr. Res. 37: 167–180.PubMedCrossRefGoogle Scholar
  180. Schwartz, N. B., and Rodén, L., 1975, Biosynthesis of chondroitin sulfate: Solubilization of chondroitin sulfate glycosyltransferases and partial purification of UDP-D-galactose:D-xylose galactosyltransferase, J. Biol. Chem. 250: 5200–5207.PubMedGoogle Scholar
  181. Schwartz, N. B., Habib, G., Campbell, S., D’Elvlyn, D., Gartner, M., Krueger, R., Olson, C., and Philipson, L., 1985, Synthesis and structure of proteoglycan core protein, Fed. Proc. 44: 369–372.PubMedGoogle Scholar
  182. Shin, H.-S., Bargiello, T., Clark, B., Jackson, F., and Young, M., 1985, An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates, Nature 317: 445–448.PubMedCrossRefGoogle Scholar
  183. Sievers, J., Hartmann, D., Gude, S., Pehlemann, F., and Berry, M., 1987, Influences of meningeal cells on the development of the brain, in: Mesenchymal—Epithelial Interactions in Neural Development ( J. K. Wolff, J. Sievers, and M. Berry, eds.), pp. 171–188, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  184. Siewert, J., and Strominger, J., 1967, Bacitracin: An inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in biosynthesis of the peptidoglycan of bacterial cell walls, Proc. Natl. Acad. Sci. USA 57: 767–770.PubMedCrossRefGoogle Scholar
  185. Silver, J., and Sidman, R., 1980, A mechanism for the guidance and topographic patterning of retinal ganglion cell axons, J. Comp. Neurol. 189: 101–111.PubMedCrossRefGoogle Scholar
  186. Smalheiser, N., 1989, Morphologic plasticity of rapid-onset neuntes in NG108–15 cells stimulated by substratum-bound laminin, Devel. Brain Res. 45: 39–47.CrossRefGoogle Scholar
  187. Smalheiser, N., and Schwartz, N., 1987, Kinetic analysis of `rapid onset’ neurite formation in NG108–15 cells reveals a dual role for substratum-bound laminin, Dev. Brain Res. 34: 111–121.CrossRefGoogle Scholar
  188. Smalheiser, N., Crain, S., and Reid, L., 1982, Retinal ganglion-cell outgrowth upon substrata derived from basement membrane-secreting tumor and CNS tissues, Soc. Neurosci. Abstr. 8: 927.Google Scholar
  189. Smalheiser, N., Crain, S., and Reid, L., 1984, Laminin as a substrate for retinal axons in vitro, Dev. Brain Res. 12: 136–140.CrossRefGoogle Scholar
  190. Stamatoglou, S. C., and Keller, J., 1983, Correlation between cell substrate attachment in vitro and cell surface heparan sulfate affinity for fibronectin and collagen, J. Cell Biol. 96: 1820–1823.PubMedCrossRefGoogle Scholar
  191. Stewart, G. R., and Pearlman, A. L., 1987, Fibronectin-like immunoreactivity in the developing cerebral cortex, J. Neurosci. 7: 3325–3333.PubMedGoogle Scholar
  192. Stoolmiller, A. C., and Dorfman, A., 1967, Mechanism of hyaluronic acid (HA) biosynthesis by group A streptococcus, Fed. Proc. 26: 2.Google Scholar
  193. Stoolmiller, A., and Dorfman, A., 1969, The biosynthesis of hyaluronic acid by streptococcus, J. Biol. Chem. 244: 236–240.PubMedGoogle Scholar
  194. Stoolmiller, A. C., Schwartz, N. B., and Dorfman, A., 1975, Biosynthesis of chondroitin 4-sulfate proteoglycan by a transplantable rat chondrosarcoma, Arch. Biochem. Biophys. 171: 124–135.PubMedCrossRefGoogle Scholar
  195. Sugahara, K., and Schwartz, N. B., 1979, Defect in phosphoadenosylphosphosulfate formation in brachymorphic mice, Proc. Natl. Acad. Sci. USA 76: 6615–6618.PubMedCrossRefGoogle Scholar
  196. Sugahara, K., and Schwartz, N. B., 1982a, A defect in 3’-phosphoadenosine 5’-phosphosulfate formation in brachymorphic mice, Arch. Biochem. Biophys. 214: 589–601.PubMedCrossRefGoogle Scholar
  197. Sugahara, K., and Schwartz, N. B., 1982b, Tissue distribution of the defect in PAPS synthesis in brachymorphic mice, Arch. Biochem. Biophys. 214: 602–609.PubMedCrossRefGoogle Scholar
  198. Sugahara, K., Schwartz, N. B., and Dorfman, A., 1979, Biosynthesis of hyaluronic acid by streptococcus, J. Biol. Chem. 254: 6252–6261.PubMedGoogle Scholar
  199. Sugahara, K., Cifonelli, A. J., and Dorfman, A., 1981, Xylosylation of nascent peptides of chick cartilage chondroitin sulfate proteoglycan, Fed. Proc. 40: 1705.Google Scholar
  200. Szakal, A. K., Kosco, M. H., and Tew, J. G., 1988, A novel in vivo follicular dendritic cell-dependent iccosome-mediated mechanism for delivery of antigen to antigen-processing cells, J. Immunol. 2: 341–353.Google Scholar
  201. Torack, R. M., and Grawe, L., 1980, Subependymal glycosaminoglycan networks in adult and developing rat brain, Histochemistry 68: 55–65.PubMedCrossRefGoogle Scholar
  202. Treadwell, B. V., Mankin, D. P., Ho, P. K., and Mankin, H. J., 1980, Cell-free synthesis of cartilage proteins: Partial identification of proteoglycan core and link proteins, Biochemistry 19: 2269–2275.PubMedCrossRefGoogle Scholar
  203. Triscott, M. X., and van der Rijn, I., 1986, Solubilization of hyaluronic acid synthetic activity from streptococci and its activation with phospholipids, J. Biol. Chem. 261: 6004–6009.PubMedGoogle Scholar
  204. Unanue E. R. Antigen-presenting function of the macrophage, Annu. Rev. Immunol. 2:395-428.PubMedCrossRefGoogle Scholar
  205. Upholt, W. B., Vertel, B. M., and Dorfman, A., 1979, Translation and characterization of messenger RNAs in differentiating chicken cartilage, Proc. Natl. Acad. Sci. USA 76: 4847–4851.PubMedCrossRefGoogle Scholar
  206. Vertel, B. M., Upholt, W. B., and Dorfman, A., 1984, Cell-free translation of messenger RNA for chondroitin sulfate proteoglycan core protein in rat cartilage, Biochem. J. 217: 259–263.PubMedGoogle Scholar
  207. Waite, K. A., Mugnai, G., and Culp, L. A., 1987, A second cell-binding domain on fibronectin (RGDS-independent) for neurite extension of human neuroblastoma cells, Exp. Cell Res. 169: 311–327.PubMedCrossRefGoogle Scholar
  208. Wekerle, H., Linington, C., Lassmann, H., and Meyerann, R., 1986, Cellular immune reactivity within the CNS, Trends Neurosci. 9: 273–277.CrossRefGoogle Scholar
  209. Wewer, U. M., Taraboletti, G., Sobel, M., Albrechtsen, R., and Liotta, L., 1987, Role of laminin receptor in tumor cell migration, Cancer Res. 47: 5691–5698.PubMedGoogle Scholar
  210. Woods, A., Couchman, J. R., Johansson, S., and Höök, M., 1986, Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments, EMBO J. 5: 665–670.PubMedGoogle Scholar
  211. Wu, T.-C., Wan, Y.-J., Chung, A., and Damjanov, I., 1983, Immunohistochemical localization of entactin and laminin in mouse embryos and fetuses, Dey. Biol. 100: 496–505.CrossRefGoogle Scholar
  212. Yamamoto, T., Iwasaki, Y., and Konno, H., 1987, Laminin A messenger produced by central neurons? Immunohistochemical demonstration of its unique distribution, Neurology 37 (Suppl.1): 234.Google Scholar
  213. Zum, A., Nick, H., and Monard, D., 1988, A glia-derived nexin promotes neurite outgrowth in cultured chick sympathetic neurons, Del). Neurosci. 10: 17–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Nancy B. Schwartz
    • 1
  • Neil R. Smalheiser
    • 2
  1. 1.Departments of Pediatrics and Biochemistry and Molecular Biology, and the Kennedy Mental Retardation Research CenterUniversity of ChicagoChicagoUSA
  2. 2.Department of Pediatrics and the Kennedy Mental Retardation Research CenterUniversity of ChicagoChicagoUSA

Personalised recommendations