Biosynthesis of Glycoproteins

  • Charles J. Waechter


Since membrane glycoproteins have been implicated in many neurobiological processes and functions (see Chapters 7, 8, and 11), the mechanisms and regulation of biosynthesis of the oligosaccharide units have been of great interest to cell and neurobiologists during the past 20 years. Much of this research activity has focused on the structure, biosynthesis, and function of N-linked oligosaccharides because the majority of the carbohydrate chains attached to membrane glycoproteins in nervous tissue are attached via N-glycosidic bonds (Krusius and Finne, 1977). For further discussion of the structural details of carbohydrate units of brain glycoproteins, see Chapter 3.


Membrane Glycoprotein GlcNAc Residue Glucosyl Residue Dolichyl Phosphate Glycoprotein Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alperin, D. M., Idoyaga-Vargas, V. P., and Carminatti, H., 1986, Rate of protein glycosylation in rat cerebral cortex, J. Neurochem. 47: 355–362.PubMedCrossRefGoogle Scholar
  2. Andersson, M., Appelkvist, E.-L., Kristensson, K., and Dallner, G., 1987, Distribution of dolichol and dolichyl phosphate in human brain, J. Neurochem. 49: 685–691.PubMedCrossRefGoogle Scholar
  3. Balsamo, J., and Lilien, J., 1982, An N-acetylgalactosaminyltransferase and its acceptor in embryonic chick neural retina exist in interconvertible particulate forms depending on their cellular location, J. Biol. Chem. 257: 349–354.PubMedGoogle Scholar
  4. Banerjee, D. K., Scher, M. G., and Waechter, C. J., 1981, Amphomycin: Effect of the lipopeptide antibiotic on the glycosylation and extraction of dolichyl monophosphate in calf brain membranes, Biochemistry 20: 1561–1568.PubMedCrossRefGoogle Scholar
  5. Barchi, R. L., 1984, Voltage-sensitive Na+ ion channels: Molecular properties and functional reconstitution, Trends Biochem. Sci. 9: 358–361.CrossRefGoogle Scholar
  6. Bar-Sagi, D., and Prives, J., 1983, Tunicamycin inhibits the expression of surface Na+ channels in cultured muscle cells, J. Cell. Physiol. 11: 77–81.CrossRefGoogle Scholar
  7. Baubichon-Cortay, H., Serres-Guillaumond, M., Louisot, P., and Broquet, P., 1986, A brain sialyltransferase having a narrow specificity for 0-glycosyl-linked oligosaccharide chains, Carbohydr. Res. 149: 209–223.PubMedCrossRefGoogle Scholar
  8. Bergmann, J. E., and Singer, S. J., 1983, Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells, J. Cell Biol. 97: 1777–1787.PubMedCrossRefGoogle Scholar
  9. Bhat, N. R., 1988, Effects of inhibitors of glycoprotein processing on oligodendroglial differentiation in primary cultures of embryonic rat brain cells, J. Neurosci. Res., 20: 158–164.PubMedCrossRefGoogle Scholar
  10. Bhat, N. R., and Waechter, C. J., 1988, Induction of N-glycosylation activity in cultured embryonic rat brain cells, J. Neurochem. 50: 375–381.PubMedCrossRefGoogle Scholar
  11. Braulke, T., and Biesold, D., 1981, Developmental patterns of galactosyltransferase activity in various regions of rat brain, J. Neurochem. 36: 1289–1291.PubMedCrossRefGoogle Scholar
  12. Breckenridge, W. C., Wolfe, L. S., and Ng Ying Kin, N. M. K., 1973, The structure of brain polyisoprenols, J. Neurochem. 21: 1311–1318.PubMedCrossRefGoogle Scholar
  13. Breen, K. C., and Regan, C. M., 1986, Synaptosomal sialyltransferase glycosylates surface proteins that are inaccessible to the action of membrane-bound sialidase, J. Neurochem. 47: 1176–1180.PubMedCrossRefGoogle Scholar
  14. Broquet, P., Leon, M., and Louisot, P., 1982, Substrate specificity of cerebral GDP-fucose:glycoprotein fucosyltransferase, Eur. J. Biochem. 123: 9–13.PubMedCrossRefGoogle Scholar
  15. Broquet, P., Serres-Guillaumond, M., Baubichon-Cortay, H., Peschard, M.-J., and Louisot, P., 1984, Subcellular localisation of cerebral fucosyltransferase, FEBS Lett. 174: 43–46.PubMedCrossRefGoogle Scholar
  16. Burton, W. A., Scher, M. G., and Waechter, C. J., 1979, Enzymatic phosphorylation of dolichol in central nervous tissue, J. Biol. Chem. 254: 7129–7136.PubMedGoogle Scholar
  17. Burton, W. A., Scher, M. G., and Waechter, C. J., 1981, Enzymatic dephosphorylation of endogenous and exogenous dolichyl monophosphate by calf brain membranes, Arch. Biochem. Biophys. 208: 409–417.PubMedCrossRefGoogle Scholar
  18. Catterall, W. A., 1986, Molecular properties of voltage-sensitive sodium channels, Annu. Rev. Biochem. 55: 953–985.CrossRefGoogle Scholar
  19. Daleo, G. R., Hopp, H. E., Romero, P. A., and Pont Lezica, R., 1977, Biosynthesis of dolichol phosphate by subcellular fractions from liver, FEBS Lett. 81: 411–414.PubMedCrossRefGoogle Scholar
  20. Ekström, T. J., Ericsson, J., and Dallner, G., 1987, Localization and terminal reactions of dolichol biosynthesis, Chem. Scr. 27: 39–47.Google Scholar
  21. Elbein, A. D., 1987, Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains, Annu. Rev. Biochem. 56: 497–534.PubMedCrossRefGoogle Scholar
  22. Finne, J., 1982, Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain, J. Biol. Chem. 257: 11966–11970.PubMedGoogle Scholar
  23. Fliesler, S. J., and Basinger, S. F., 1985, Tunicamycin blocks the incorporation of opsin into retinal rod outer segment membranes, Proc. Natl. Acad. Sci. USA 82: 1116–1120.PubMedCrossRefGoogle Scholar
  24. Fliesler, S. J., Rayborn, M. E., and Hollyfield, J. G., 1986, Inhibition of oligosaccharide processing and membrane morphogenesis in retinal rod photoreceptor cells, Proc. Natl. Acad. Sci. USA 83: 6435–6439.PubMedCrossRefGoogle Scholar
  25. Fuhrmann, U., Bause, E., and Ploegh, H., 1985, Inhibitors of oligosaccharide processing, Biochim. Biophys. Acta 825: 95–110.PubMedCrossRefGoogle Scholar
  26. Gandhi, C. R., and Keenan, R. W., 1983, The role of calmodulin in the regulation of dolichol kinase, J. Biol. Chem. 258: 7639–7643.PubMedGoogle Scholar
  27. Genain, C., and Waechter, C. J., 1987, Activation of pig brain dolichol kinase by phospholipids, Fed. Proc. 46: 980 (Abstr.).Google Scholar
  28. Gething, M.-J., McCammon, K., and Sambrook, J., 1986, Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport, Cell 46: 939–950.PubMedCrossRefGoogle Scholar
  29. Grange, D. K., and Adair, W. L., 1977, Studies on the biosynthesis of dolichyl phosphate: Evidence for the in vitro formation of 73-dehydrodolichyl phosphate, Biochem. Biophys. Res. Commun. 79: 734–740.PubMedCrossRefGoogle Scholar
  30. Hall, N. A., and Patrick, A. D., 1987, Accumulation of phosphorylated dolichol in several tissues in ceroidlipofuscinosis (Batten disease), Clin. Chim. Acta 170: 323–330.PubMedCrossRefGoogle Scholar
  31. Harford, J. B., and Waechter, C. J., 1979, Transfer of N,N’-diacetylchitobiose from dolichyl diphosphate into a gray matter membrane glycoprotein, Arch. Biochem. Biophys. 197: 424–435.PubMedCrossRefGoogle Scholar
  32. Harford, J. B., and Waechter, C. J., 1980, A developmental change in dolichyl phosphate mannose synthase activity in pig brain, Biochem J. 188: 481–490.PubMedGoogle Scholar
  33. Hartshome, R. P., Messner, D. J., Coppersmith, J. C., and Catterall, W. C., 1982, The saxitoxin receptor of the sodium channel from rat brain: Evidence for two nonidentical ß subunits, J. Biol. Chem. 257: 13888–13891.Google Scholar
  34. Heacock, A. M., 1982, Glycoprotein requirement for neurite outgrowth in goldfish retina explants: Effects of tunicamycin, Brain Res. 241: 307–315.PubMedCrossRefGoogle Scholar
  35. Hirschberg, C. B., and Snider, M. D., 1987, Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus, Annu. Rev. Biochem. 56: 63–87.PubMedCrossRefGoogle Scholar
  36. Holland, P. C., and Herscovics, A., 1986, Inhibition of myoblast fusion by the glucosidase inhibitor N-methyl- 1-deoxynojirimycin, but not by the mannosidase inhibitor 1-deoxymannojirimycin, Biochem. J. 238: 335–340.PubMedGoogle Scholar
  37. Idoyaga-Vargas, V., and Carminatti, H., 1982, Postnatal changes in dolichol-pathway enzyme activities in cerebral cortex neurons, Biochem. J. 202: 87–95.PubMedGoogle Scholar
  38. Idoyaga-Vargas, V., Belocopitow, E., Mentaberry, A., and Carminatti, H., 1980, A phosphatase acting on dolichyl phosphate in membranes from neuronal perikarya, FEBS Lett. 112: 63–66.PubMedCrossRefGoogle Scholar
  39. Ishii, S., and Volpe, J. J., 1987, Dolichol-linked glycoprotein synthesis in G1 is necessary for DNA synthesis in synchronized primary cultures of cerebral glia, J. Neurochem. 49: 1606–1612.PubMedCrossRefGoogle Scholar
  40. James, M. J., and Kandutsch, A. A., 1980, Evidence for independent regulation of dolichol and cholesterol synthesis in developing mouse brain, Biochim. Biophys. Acta 619: 432–435.PubMedCrossRefGoogle Scholar
  41. Jorgensen, O. S., and Moller, M., 1980, Immunocytochemical demonstration of the D2 protein in the presynaptic complex, Brain Res. 194: 419–429.PubMedCrossRefGoogle Scholar
  42. Jork, R., Schmitt, M., Lossner, B, and Matthies, H., 1984, Dopamine stimulated L-fucose incorporation into brain proteins is related to an increase in fucokinase activity, Biomed. Biochim. Acta 43: 261–270.PubMedGoogle Scholar
  43. Kaplan, H. A., Welply, J. K., and Lennarz, W. J., 1987, Oligosaccharyl transferase: The central enzyme in the pathway of glycoprotein assembly, Biochim. Biophys. Acta 906: 161–173.CrossRefGoogle Scholar
  44. Kaplan, H. A., Naider, F., and Lennarz, W. J., 1988, Partial characterization and purification of the glycosylation site recognition component of oligosaccharyltransferase, J. Biol. Chem. 263: 7814–7820.PubMedGoogle Scholar
  45. Keller, R. K., Armstrong, D., Crum, F. C., and Koppang, N., 1984, Dolichol and dolichyl phosphate levels in brain tissue from English setters with ceroid lipofuscinosis, J. Neurochem. 42: 1040–1047.PubMedCrossRefGoogle Scholar
  46. Kohsaka, S., Mita, K., Matsuyama, M., Mizuno, M., and Tsukada, Y., 1985, Impaired development of rat cerebellum induced by neonatal injection of the glycoprotein synthesis inhibitor, tunicamycin, J. Neurochem. 44: 406–410.PubMedCrossRefGoogle Scholar
  47. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54: 631–664.PubMedCrossRefGoogle Scholar
  48. Kornfeld, S., 1987, Trafficking of lysosomal enzymes, FASEB J. 1: 462–468.PubMedGoogle Scholar
  49. Krusius, T., and Finne, J., 1977, Structural features of tissue glycoproteins: Fractionation and methylation analyses of glycopeptides derived from rat brain, kidney and liver, Eur. J. Biochem. 78: 369–380.PubMedCrossRefGoogle Scholar
  50. Law, P. Y., Ungar, H. G., Horn, D. S., and Loh, H. H., 1985, Effects of cycloheximide and tunicamycin on opiate receptor activities in neuroblastoma x glioma NG108–15 hybrid cells, Biochem. Pharmacol. 34: 9–17.PubMedCrossRefGoogle Scholar
  51. Lennarz, W. J., 1987, Protein glycosylation in the endoplasmic reticulum: Current topological issues, Biochemistry 26: 7205–7210.PubMedCrossRefGoogle Scholar
  52. Liles, W. C., and Nathanson, N. M., • 1986, Regulation of neuronal muscarinic acetylcholine receptor number by protein glycosylation, J. Neurochem. 46: 89–95.Google Scholar
  53. Lodish, H. F., and King, N., 1984, Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex, J. Cell Biol. 98: 1720–1729.PubMedCrossRefGoogle Scholar
  54. Matsui, Y., Lombard, D., Hoflack, B., Harth, S., Massarelli, R., Mandel, P., and Dreyfus, H., 1983, Ectoglycosyltransferase activities at the surface of cultured neurons, Biochem. Biophys. Res. Commun. 113: 446–453.PubMedCrossRefGoogle Scholar
  55. McCoy, R. D., Vimr, E. R., and Troy, F. A., 1985, CMP-NeuNAc:poly-a-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules, J. Biol. Chem. 260: 12695–12699.PubMedGoogle Scholar
  56. McHardy, M. S., Schlesinger, S., Lindstrom, J., and Merlie, J. P., 1986, The effects of inhibiting oligosaccharide trimming by 1-deoxynojirimycin on the nicotinic acetylcholine receptor, J. Biol. Chem. 261: 14825–14832.Google Scholar
  57. McHardy, S. M., Lindstrom, J., and Merlie, J. P., 1987, Formation of the a-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum, J. Biol. Chem. 262: 4367–4376.Google Scholar
  58. McLawhon, R. W., Cermak, D., Ellory, J. C., and Dawson, G., 1983, Glycosylation-dependent regulation of opiate (enkephalin) receptors in neurotumor cells, J. Neurochem. 41: 1286–1296.PubMedCrossRefGoogle Scholar
  59. Merlie, J. P., and Smith, M. M., 1986, Synthesis and assembly of acetylcholine receptor, a multisubunit membrane glycoprotein, J. Membr. Biol. 91: 1–10.PubMedCrossRefGoogle Scholar
  60. Merlie, J. P., Sebbane, R., Tzartos, S., and Lindstrom, J., 1982, Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells, J. Biol. Chem. 257: 2694–2701.PubMedGoogle Scholar
  61. Messner, D. J., and Catterall, W. A., 1985, The sodium channel from rat brain: Separation and characterization of subunits, J. Biol. Chem. 260: 10597–10604.PubMedGoogle Scholar
  62. Ng Ying Kin, N. M. K., Palo, J., Haltia, M., and Wolfe, L. S., 1983, High levels of brain dolichols in neuronal ceroid-lipofuscinosis and senescence, J. Neurochem. 40: 1465–1473.PubMedCrossRefGoogle Scholar
  63. Olden, K., Law, J., Hunter, V., Romain, R., and Parent, J. B., 1981, Inhibition of fusion of embryonic muscle cells in culture by tunicamycin is prevented by leupeptin, J. Cell Biol. 88: 199–204.PubMedCrossRefGoogle Scholar
  64. Parodi, A. J., Behrens, N. H., Leloir, L. F., and Carminatti, H., 1972, The role of polyprenol-bound saccharides as intermediates in glycoprotein synthesis in liver, Proc. Natl. Acad. Sci. USA 69: 3268–3272.PubMedCrossRefGoogle Scholar
  65. Paton, B. C., and Poulos, A., 1984, Dolichol metabolism in cultured skin fibroblasts from patients with “neuronal” ceroid lipofuscinosis (Batten’s disease), J. lnher. Metab. Dis. 7: 112–116.CrossRefGoogle Scholar
  66. Plantner, J. J., and Kean, E. L., 1988, The dolichol pathway in the retina: Oligosaccharide-lipid biosynthesis, Exp. Eye Res. 46: 785–800.PubMedCrossRefGoogle Scholar
  67. Plantner, J. J., Poncz, L., and Kean, E. L., 1980, Effect of tunicamycin on the glycosylation of rhodopsin, Arch. Biochem. Biophys. 201: 527–532.PubMedCrossRefGoogle Scholar
  68. Poduslo, J. F., 1985, Posttranslational protein modification: Biosynthetic control mechanisms in the glycosylation of the major myelin glycoprotein by Schwann cells, J. Neurochem. 44: 1194–1206.PubMedCrossRefGoogle Scholar
  69. Presper, K. A., and Heath, E. C., 1983, Glycosylated lipid intermediates involved in glycoprotein biosynthesis, in: The Enzymes, Vol. XVI ( P. D. Boyer, ed.), pp. 449–488, Academic Press, New York.Google Scholar
  70. Prives, J., and Bar-Sagi, D., 1983, Effect of tunicamycin, an inhibitor of protein glycosylation, on the biological properties of acetylcholine receptor in cultured muscle cells, J. Biol. Chem. 258: 1775–1780.PubMedGoogle Scholar
  71. Pullarkat, R. K., and Reha, H., 1982, Accumulation of dolichols in brains of elderly, J. Biol. Chem. 257: 5991–5993.PubMedGoogle Scholar
  72. Rapaport, R. N., Benjamins, J. A., and Skoff, R. P., 1982, Effects of monensin on assembly of Po protein into peripheral nerve myelin, J. Neurochem. 39: 1101–1110.PubMedCrossRefGoogle Scholar
  73. Rostas, J. A. P., Leung, W. N., and Jeffrey, P. L., 1981, Glycosyltransferase activities in chicken brain synaptic junctions, Neurosci. Lett. 24: 155–160.PubMedCrossRefGoogle Scholar
  74. Rothbard, J. B., Brackenbury, R., Cunningham, B. A., and Edelman, G. M., 1982, Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains, J. Biol. Chem. 257: 11064–11069.PubMedGoogle Scholar
  75. Rothman, J. E., Miller, R. L., and Urbani, L. J., 1984a, Intercompartmental transport in the Golgi complex is a dissociative process: Facile transfer of membrane protein between two Golgi populations, J. Cell Biol. 99: 260–271.CrossRefGoogle Scholar
  76. Rothman, J. E., Urbani, L. J., and Brands, R., 1984b, Transport of protein between cytoplasmic membranes of fused cells: Correspondence to processes reconstituted in a cell-free system, J. Cell Biol. 99: 248–259.CrossRefGoogle Scholar
  77. Sakakihara, Y., and Volpe, J. J., 1984, Dolichol deposition in developing mammalian brain: Content of free and fatty acylated dolichol and proportion of specific isoprenologues, Dey. Brain Res. 14: 255–262.CrossRefGoogle Scholar
  78. Sakakihara, Y., and Volpe, J. J., 1985a, Dolichol in human brain: Regional and developmental aspects, J. Neurochem. 44: 1535–1540.CrossRefGoogle Scholar
  79. Sakakihara, Y., and Volpe, J. J., 1985b, Zn2+, not Cat+, is the most effective cation for activation of dolichol kinase of mammalian brain, J. Biol. Chem. 260: 15413–15419.PubMedGoogle Scholar
  80. Schachter, H., 1986, Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides, Can. J. Biochem. Cell Biol. 64: 163–181.CrossRefGoogle Scholar
  81. Schachter, H., Narasimhan, S., Gleeson, P. A., and Vella, G., 1983, Control of branching during the biosynthesis of asparagine-linked oligosaccharides, Can. J. Biochem. Cell Biol. 61: 1049–1066.PubMedCrossRefGoogle Scholar
  82. Scher, M. G., and Waechter, C. J., 1978, Possible role of membrane-bound glucosidase in the processing of calf brain glycoproteins, in: Proc. Eur. Soc. Neurochem., Vol. 1 ( V. Neuhoff, ed.), p. 559, Verlag Chemie, Weinheim.Google Scholar
  83. Scher, M. G., and Waechter, C. J., 1979, A glucosylated oligosaccharide lipid intermediate in calf brain: Evidence for the transfer of oligosaccharide into membrane glycoprotein and subsequent removal of glucosyl residues, J. Biol. Chem. 254: 2630–2637.PubMedGoogle Scholar
  84. Scher, M. G., and Waechter, C. J., 1981, Lipolytic cleavage of dolichyl oleate catalyzed by calf brain membranes, Biochem. Biophys. Res. Commun. 99: 675–681.PubMedCrossRefGoogle Scholar
  85. Scher, M. G., and Waechter, C. J., 1984, Brain dolichyl pyrophosphate phosphatase: Solubilization, characterization and differentiation from dolichyl monophosphate phosphatase activity, J. Biol. Chem. 259: 14580–14585.PubMedGoogle Scholar
  86. Scher, M. G., and Waechter, C. J., 1985, Dolichyl pyrophosphate phosphatase in brain, Methods Enzymol. 111: 547–553.PubMedCrossRefGoogle Scholar
  87. Scher, M. G., Burton, W. A., and Waechter, C. J., 1980, Enzymatic glucosylation of dolichyl monophos- phate formed via cytidine triphosphate in calf brain membranes, J. Neurochem. 35: 844–849.PubMedCrossRefGoogle Scholar
  88. Scher, M. G., DeVries, G. H., and Waechter, C. J., 1984, Subcellular sites of enzymes catalyzing the phosphorylation—dephosphorylation of dolichol in the central nervous system, Arch. Biochem. Biophys. 231: 293–302.PubMedCrossRefGoogle Scholar
  89. Scher, M. G., Sumbilla, C. M., and Waechter, C. J., 1985, Dolichyl phosphate metabolism in brain: Developmental increase in polyisoprenyl phosphate phosphatase activity, J. Biol. Chem. 260: 13742–13746.PubMedGoogle Scholar
  90. Schmidt, J. W., and Catterall, W. A., 1986, Biosynthesis and processing of the a-subunit of the voltage-sensitive sodium channel in rat brain neurons, Cell 46: 437–445.PubMedCrossRefGoogle Scholar
  91. Schmidt, J. W., and Catterall, W. A., 1987, Palmitylation, sulfation and glycosylation of the a subunit of the sodium channel, J. Biol. Chem. 262: 13713–13723.PubMedGoogle Scholar
  92. Smith, M. E., and Stemberger, N. H., 1982, Glycoprotein biosynthesis in peripheral nervous system myelin: Effect of tunicamycin, J. Neurochem. 38: 1044–1049.PubMedCrossRefGoogle Scholar
  93. Smith, M. E., Somera, F. P., and Sims, T. J., 1985, Enzymatic regulation of glycoprotein synthesis in peripheral nervous system myelin, J. Neurochem. 45: 1205–1212.PubMedCrossRefGoogle Scholar
  94. Sumbilla, C., and Waechter, C. J., 1985a, Dolichol kinase, phosphatase and esterase activity in calf brain, Methods Enzymol. 111: 471–482.PubMedCrossRefGoogle Scholar
  95. Sumbilla, C., and Waechter, C. J., 1985b, Properties of brain dolichol kinase activity solubilized with a zwitterionic detergent, Arch. Biochem. Biophys. 238: 75–82.PubMedCrossRefGoogle Scholar
  96. Tamkun, M. M., and Fambrough, D. M., 1986, The (Na ++K+)-ATPase of chick sensory neurons. Studies on biosynthesis and intracellular transport, J. Biol. Chem. 261: 1009–1019.PubMedGoogle Scholar
  97. Tkacz, J. S., and Lampen, J. O., 1975, Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes, Biochem. Biophys. Res. Commun. 65: 248–257.PubMedCrossRefGoogle Scholar
  98. Tulsiani, D. R. P., and Touster, 0., 1987, Processing of N-linked glycoproteins in rat brain by glucosidases I and II and a glucosyl mannosidase, Fed. Proc. 46: 2151.Google Scholar
  99. Tulsiani, D. R. P., Broquist, H. P., James, L. F., and Touster, 0., 1988, Production of hybrid glycoproteins and accumulation of oligosaccharides in the brain of sheep and pigs administered swainsonine or locoweed, Arch. Biochem. Biophys. 264: 607–617.PubMedCrossRefGoogle Scholar
  100. Volpe, J. J., Sakakihara, Y., and Ishii, S., 1987, Dolichol-linked glycoprotein synthesis in developing mammalian brain: Maturational changes of the N-acetylglucosaminylphosphotransferase, Dev. Brain Res. 33: 277–284.CrossRefGoogle Scholar
  101. Waechter, C. J., and Harford, J. B., 1977, Evidence for the enzymatic transfer of N-acetylglucosamine into dolichol derivatives and glycoproteins by calf brain membranes, Arch. Biochem. Biophys. 181: 185–198.PubMedCrossRefGoogle Scholar
  102. Waechter, C. J., and Harford, J. B., 1979, A dolichol-linked trisaccharide from central nervous tissue: Structure and biosynthesis, Arch. Biochem. Biophys. 192: 380–390.PubMedCrossRefGoogle Scholar
  103. Waechter, C. J., and Scher, M. G., 1979, Biosynthesis of glycoproteins, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 75–102, Plenum Press, New York.CrossRefGoogle Scholar
  104. Waechter, C. J., and Scher, M. G., 1981, Methods for studying lipid-mediated glycosyltransferases involved in the assembly of glycoproteins in nervous tissue, in: Research Methods in Neurochemistry, Vol. 5 (N. Marks and R. Rodnight, eds.), pp. 201–231, Plenum Press, New York.Google Scholar
  105. Waechter, C. J., Schmidt, J. W., and Catterall, W. A., 1983, Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells, J. Biol. Chem. 258: 5117–5123.PubMedGoogle Scholar
  106. Wellner, R. B., and Lucas, J. J., 1979, Evidence for a compound with the properties of 2,3-dehydrodolichyl pyrophosphate, FEBS Len. 104: 379–383.CrossRefGoogle Scholar
  107. Wolf, M. J., Scher, M. G., and Waechter, C. J., 1988, Subcellular location of dolichyl pyrophosphate phosphatase activity in brain, FASEB J. 2: 1528 (Abstr.).Google Scholar
  108. Wong, T. K., and Lennarz, W. J., 1982, The site of biosynthesis and intracellular deposition of dolichol in rat liver, J. Biol. Chem. 257: 6619–6624.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Charles J. Waechter
    • 1
  1. 1.Department of BiochemistryUniversity of Kentucky College of Medicine, A. B. Chandler Medical CenterLexingtonUSA

Personalised recommendations