Biosynthesis, Metabolism, and Biological Effects of Gangliosides

  • Robert W. Ledeen


Early speculation on ganglioside function was fashioned in the belief that these substances are localized primarily in the neuron. Current awareness of their widespread distribution has considerably broadened the range of potential functions receiving consideration, although neuronal aspects continue to command special interest owing to the relatively high content and molecular complexity of gangliosides in these cells. Further interest derives from the fact that neurons contain approximately two-thirds of their total glycoconjugate sialic acid in these lipid-bound forms, in contrast to extra-neural cells which contain only minor proportions of ganglioside. However, it should be emphasized that despite such relative enrichment, gangliosides comprise only an estimated 2–3% of the neuronal plasma membrane phospholipid content on a molar basis. Even considering that this figure doubles when focusing on the outer half of the bilayer where they are localized, they remain relatively minor components of the membrane. In terms of cell surface carbohydrate, they are viewed as making an important contribution to the glycocalyx surrounding the neuronal membrane and determining many of its surface characteristics. This general perception, while probably correct, has been lacking in details concerning the specific roles of the myriad structural forms known to occur in this and other membranes.


Dorsal Root Ganglion Sialic Acid Tetanus Toxin Sandhoff Disease Brain Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Miyatake, T., Norton, W. T., and Suzuki, K., 1979, Activities of glycolipid hydrolases in neurons and astroglia from rat and calf brains and in oligodendroglia from calf brain, Brain Res. 161: 179 – 182.PubMedCrossRefGoogle Scholar
  2. Agnati, L. F., Benfenati, F., Battistini, N., Cavicchioli, L., Fuxe, K., and Toffano, G., 1983a, Selective modulation of 3H-spiperone labeled 5-HT receptors by subchronic treatment with the ganglioside GM1 in the rat, Acta Physiol. Scand. 117: 311 – 314.PubMedCrossRefGoogle Scholar
  3. Agnati, L. F., Fuxe, K., Calza, L., Benfenati, F., Cavicchioli, L., Toffano, G., and Goldstein, M., 1983b, Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting, Acta Physiol. Scand. 119: 347 – 363.PubMedCrossRefGoogle Scholar
  4. Ando, A., and Yu, R. K., 1977, Isolation and characterization of a novel trisialoganglioside, GT1a, from human brain, J. Biol. Chem. 252: 6247 – 6250.Google Scholar
  5. Ando, S., 1983, Gangliosides in the nervous system, Neurochem. Int. 5: 507–537.PubMedCrossRefGoogle Scholar
  6. Ando, S., Tanaka, Y., and Ono, Y., 1981, Turnover of glycolipids in mouse brain myelin, in: Glycoconjugates: Proc. VIth Int. Symp. Glycoconjugates (T. Yamakawa, T. Osawa, and S. Handa, eds.), pp. 91 – 92, Japan Sci. Soc. Press, Tokyo.Google Scholar
  7. Appel, S. H., 1981, A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism, and Alzheimer disease, Ann. Neurol. 10: 499 – 505.PubMedCrossRefGoogle Scholar
  8. Aquino, D. A., Bisby, M. A., and Ledeen, R. W., 1985, Retrograde axonal transport of gangliosides and glycoproteins in the motoneurons of rat sciatic nerve, J. Neurochem. 45:1262–1267.PubMedCrossRefGoogle Scholar
  9. Aquino, D. A., Bisby, M. A., and Ledeen, R. W., 1987, Bidirectional transport of gangliosides, glycoproteins and neutral glycosphingolipids in the sensory neurons of rat sciatic nerve, Neuroscience 20:1023–1029.PubMedCrossRefGoogle Scholar
  10. Arbogast, B. W., and Arsenis, C., 1974, The enzymatic ontogeny of neurons and glial cells isolated from postnatal rat cerebral gray matter, Neurobiology 4: 21 – 37.PubMedGoogle Scholar
  11. Arpaia, E., Dumbrille-Ross, A., Maler, T., Maler, K., Neote, K., Tropak, M., Troxel, C., Stirling, J. L., Pitts, J. S., Bapat, P., Lamhonwah, A.-M., Mahuran, D. J., Schuster, S. M., Clarke, J. T. R., Lowden, J. A., and Gravel, R. A., 1988, Identification of an altered splice site in Ashkenazic Tay—Sachs disease, Nature 333: 85 – 86.Google Scholar
  12. Barkai, A., and Di Cesare, J. L., 1975, Influence of sialic acid groups on the retention of glycosphingolipids in blood plasma, Biochim. Biophys. Acta 398: 287 – 293.Google Scholar
  13. Basu, S., Das, K. K., Schaeper, R. J., Banerjee, P., Daussin, F., Basu, M., Khan, F. A., and Zhang, B.-J., 1988, Biosynthesis in vitro of neuronal and non-neuronal gangliosides, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects, Vol. 14 (R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 259 – 273.Google Scholar
  14. Basu, S., Basu, M., Moskal, J. R., and Chien, J.-L., 1976, Analysis of an A-active nonaglycosylceramide fraction, in: Glycolipid Methodology ( L. A. Witting, ed.), pp. 123–139, American Oil Chemists Society, Champaign, Ill.Google Scholar
  15. Basu, S., and Basu, M., 1982, Expression of glycosphingolipid glycosyltransferases in development and transformation, in: The Glycoconjugates, Vol. 3 ( M. Horowitz, ed.), pp. 265 – 285, Academic Press, New York.Google Scholar
  16. Berry-Kravis, E., and Dawson, G., 1985, Possible role of gangliosides in regulating an adenylate cyclaselinked 5-hydroxytryptamine (5-HT1) receptor, J. Neurochem. 45: 1739 – 1747.PubMedCrossRefGoogle Scholar
  17. Bisby, M. A., and Bulger, V. T., 1977, Reversal of axonal transport at a nerve crush, J. Neurochem. 29: 313 – 320.PubMedCrossRefGoogle Scholar
  18. Blackburn, C. C., Swank-Hill, P., and Schnaar, R. L., 1986, Gangliosides support neural retina cell adhesion, J. Biol. Chem. 261: 2873 – 2881.PubMedGoogle Scholar
  19. Bose, B., Osterholm, J. L., and Kalia, M., 1986, Ganglioside-induced regeneration and reestablishment of axonal continuity in spinal cord-transected rats, Neurosci. Lett. 63: 165 – 169.Google Scholar
  20. Bremer, E. G., and Hakomori, S., 1982, GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: Ganglioside may regulate growth factor receptor function, Biochem. Biophys. Res. Commun. 106: 711 – 718.PubMedCrossRefGoogle Scholar
  21. Bremer, E. G., and Hakomori, S.-I., 1984, Gangliosides as receptor modulators, in: Ganglioside Structure, Function, and Biomedical Potential ( R. W. Ledeen, R. K. Yu, M. M. Rapport, and K. Suzuki, eds.), pp. 381 – 394, Plenum Press, New York.CrossRefGoogle Scholar
  22. Bremer, E. G., Hakomori, S.-I., Bowen-Pope, D. F., Raines, E., and Ross, R., 1984, Gangliosidemediated modulation of cell growth, growth factor binding, and receptor phosphorylation J. Biol. Chem. 259: 6818 – 6825.PubMedGoogle Scholar
  23. Bremer, E. G., Schlessinger, J., and Hakomori, S.-I., 1986, Ganglioside-mediated modulation of cell growth, J. Biol. Chem. 261: 2434 – 2440.PubMedGoogle Scholar
  24. Brown, R. E., Stephenson, F. A., Markello, T., Barenholz, Y., and Thompson, T. E., 1985, Properties of a specific glycolipid transfer protein from bovine brain, Chem. Phys. Lipids 38: 79 – 93.PubMedCrossRefGoogle Scholar
  25. Brunngraber, E., 1979, Neurochemistry of Aminosugars: Neurochemistry and Neuropathology of the Complex Carbohydrates, Thomas, Springfield, Ill.Google Scholar
  26. Burczak, J. D., Moskal, J. R., Trosko, J. E., Fairley, J. L., and Sweeley, C. C., 1983, Phorbol ester-associated changes in ganglioside metabolism, Exp. Cell Res. 147: 281 – 285.PubMedCrossRefGoogle Scholar
  27. Burczak, J. D., Soltysiak, R. M., and Sweeley, C. C., 1984, Regulation of membrane-bound enzymes of glycosphingolipid biosynthesis, J. Lipid Res. 25: 1541 – 1547.PubMedGoogle Scholar
  28. Burton, R. M., Balfour, Y. M., and Gibbons, J. M., 1964, Gangliosides and cerebrosides turnover rates in rat brain, Fed. Proc. 23: 230.Google Scholar
  29. Byrne, M. C., Ledeen, R. W., Roisen, F. J., Yorke, G., and Sclafani, J. R., 1983, Ganglioside-induced neuritogenesis: Verification that gangliosides are the active agents, and comparison of molecular species, J. Neurochem. 41: 1214 –1222.PubMedCrossRefGoogle Scholar
  30. Byrne,M. C., Farooq, M., Sbaschnig-Agler, M., Norton, W. T., and Ledeen, R. W., 1988, Ganglioside content of astroglia and neurons isolated from maturing rat brain: Consideration of the source of astroglial gangliosides, Brain Res.,481:87–97.Google Scholar
  31. Caccia, M. R., Meola, G., Cerri, C., Frattola, L., Scarlato, G., and Aporti, F., 1979, Treatment of denervated muscle by gangliosides, Muscle Nerve 2: 382 – 389.PubMedCrossRefGoogle Scholar
  32. Cannella, M. S., Wu, G., Vaswani, K. K., and Ledeen, R. W., 1988a, Neuritogenic effects of exogenous gangliosides and synthetic sialoglycolipids: Comparison to endogenous ganglioside requirements, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects (R. W.-Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 379–390.Google Scholar
  33. Cannella, M. S., Roisen, F. J., Ogawa, T., Sugimoto, M., and Ledeen, R. W., 19886, Comparison of epi- GM3 with GM3 and GM1 as stimulators of neurite outgrowth, Dev. Brain Res. 39: 137 – 143.Google Scholar
  34. Cannella, M. S., Acher, A. J., and Ledeen, R. W., 1988c, Stimulation of neurite outgrowth in vitro by a glycero-ganglioside, Int. J. Dev. Neurosci., 6: 319 – 326.PubMedCrossRefGoogle Scholar
  35. Caputto, B. L., and Caputto, R., 1986, Optic nerve integrity is required for light to affect retina ganglion cell gangliosides, Neurochem. Res. 11: 1083 – 1090.PubMedCrossRefGoogle Scholar
  36. Caputto, B. L., Nores, G. A., Cemborian, B. N., and Caputto, R., 1982, The effect of light exposure following an intraocular injection of [3H]N-acetylmannosamine on the labeling of gangliosides and glycoproteins of retina ganglion cells and optic tectum of singly caged chicken, Brain Res. 245: 23 1238.Google Scholar
  37. Caputto, R., Maccioni, H. J., Arce, A., and Cumar, F. A., 1976, Biosynthesis of brain gangliosides, Adv. Exp. Med. Biol. 71: 27 – 44.PubMedGoogle Scholar
  38. Caputto, R., Maccioni, A. H. R., and Caputto, B. L., 1977, Activation of deoxycholate solubilized adenosine triphosphatase by ganglioside and asialoganglioside preparations, Biochem. Biophys. Res. Commun. 74: 1046 – 1052.PubMedCrossRefGoogle Scholar
  39. Casamenti, F., Bracco, L., Bartolini, L., and Pepeu, G., 1985, Effects of ganglioside treatment in rats with a lesion of the cholinergic forebrain nuclei, Brain Res. 338: 45 – 52.PubMedCrossRefGoogle Scholar
  40. Ceccarelli, B., Aporti, F., and Finesso, M., 1976, Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation, in: Ganglioside Function ( G. Porcellati, B. Ceccarelli, and G. Tettamanti, eds.), pp. 275 – 293, Plenum Press, New York.Google Scholar
  41. Chan, K.-F. J., 1987a, Ganglioside-modulated protein phosphorylation in myelin, J. Biol. Chem. 262: 2415 – 2422.PubMedGoogle Scholar
  42. Chan, K.-F. J., 1987b, Ganglioside-modulated protein phosphorylation. Partial purification and charac- terization of a ganglioside-stimulated protein kinase in brain, J. Biol. Chem. 262: 5248 – 5255.PubMedGoogle Scholar
  43. Chan, K.-F. J., 1988, Ganglioside-modulated protein phosphorylation. Partial purification and characterization of a ganglioside-inhibited protein kinase in brain, J. Biol. Chem. 263: 568 – 574.PubMedGoogle Scholar
  44. Cheresh, D. A., and Klier, F. G., 1986, Disialoganglioside GD2 distributes preferentially into substrate-associated microprocesses on human melanoma cells during their attachment to fibronectin, J. Cell Biol. 102: 1887 – 1897.PubMedCrossRefGoogle Scholar
  45. Cheresh, D. A., Pierschbacher, M. D., Herzig, M. A., and Mujoo, K., 1986, Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins, J. Cell Biol. 102: 688 – 696.PubMedCrossRefGoogle Scholar
  46. Cheresh, D. A., Pytela, R., Pierschbacher, M. D., Klier, F. G., Ruoslahti, E., and Reisfeld, R. A., 1987, An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exists in a divalent cation-dependent functional complex with the disialoganglioside GD2, J. Cell Biol. 105: 1163 – 1173.PubMedCrossRefGoogle Scholar
  47. Cheresh, D. A., Pytela, R., Pierschbacher, M. D., Ruoslahti, E., and Reisfeld, R. A., 1988, An Arg-GlyAsp-directed adhesion receptor on human melanoma cells exists in a calcium-dependent functional complex with the disialoganglioside GD2, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects ( R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 203 – 217.Google Scholar
  48. Cochran, F. B., Jr., Yu, R. K., and Ledeen, R. W., 1982, Myelin gangliosides in vertebrates, J. Neurochem. 39: 773 – 779.PubMedCrossRefGoogle Scholar
  49. Consolazione, A., and Toffano, G., 1988, Ganglioside role in functional recovery of damaged nervous system, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects ( R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 523 – 533.Google Scholar
  50. Conzelmann, E., and Sandhoff, K., 1978, AB variant of infantile GM2 gangliosidosis: Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2, Proc. Natl. Acad. Sci. USA 75: 3979 – 3983.PubMedCrossRefGoogle Scholar
  51. Conzelmann, E., Burg, J., Stephan, G., and Sandhoff, K., 1982, Complexing of glycolipids and their transfer between membranes by the activator protein for degradation of lysosomal ganglioside GM2, Eur. J. Biochem. 123: 455–465.PubMedCrossRefGoogle Scholar
  52. Critchley, D. R., Habig, W. H., and Fishman, P. H., 1986, Reevaluation of the role of gangliosides as receptors for tetanus toxin, J. Neurochem. 47: 213 – 222.PubMedCrossRefGoogle Scholar
  53. Cuello, A. C., Stephens, P. H., Tagari, P. C., Sofroniew, M. V., and Pearson, R. C. A., 1986, Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1, Brain Res. 376: 373 – 377.PubMedCrossRefGoogle Scholar
  54. Cuello, A. C., Garofolo, L., Maysinger, D., and Pioro, E., 1987, Gangliosides and nerve growth factor: Effects on plastic changes after cortical lesions, J. Neurochem. 48 (Suppl.): S156.Google Scholar
  55. Dal Toso, R., Presti, D., Benvegnu, D., Tettamanti, G., Toffano, G., and Leon, A., 1986, Primary neural cell cultures and GM 1 monosialoganglioside: A model for comprehension of the mechanisms underlying GM1 effects in CNS repair process in vivo, in: Gangliosides and Neuronal Plasticity, Vol. 6 ( G. Tettamanti, R. W. Ledeen, K. Sandhoff, Y. Nagai, and G. Toffano, eds.), pp. 245 – 255, Liviana Press, Padova.Google Scholar
  56. Davis, C. W., and Daly, J. W., 1980, Activation of rat cerebral cortical 3’,5’-cyclic nucleotide phosphodiesterase activity by gangliosides, Mol. Pharmacol. 17: 206 – 211.PubMedGoogle Scholar
  57. Dawson, G., 1979, Complex carbohydrates of cultured neuronal and glial cell lines, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 291 – 326, Plenum Press, New York.CrossRefGoogle Scholar
  58. Dawson, G., and Vartanian, T., 1988, Glycolipids as the source and modulator of receptor-mediated second messengers, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects ( R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 219 – 228.Google Scholar
  59. Dawson, G., McLawhon, R., and Miller, R. J., 1980, Inhibition of sialoglycosphingolipid (ganglioside) biosynthesis in mouse clonal lines N4T61 and NG108–15 by 13-endorphin, enkephalins, and opiates, J. Biol. Chem. 255: 129 – 137.PubMedGoogle Scholar
  60. Dawson, G., Hancock, L. W., and Vartanian, T., 1986, Regulation of GM2 ganglioside metabolism in cultured cells, Chem. Phys. Lipids 42: 105–116.PubMedCrossRefGoogle Scholar
  61. d’Azzo, A., Proia, R. L., Kolodny, E. H., Kaback, M. M., and Neufeld, E. F., 1984, Faulty association of a-and 13-subunits in some forms of 13-hexosaminidase A deficiency, J. Biol. Chem. 259: 11070 – 11074.PubMedGoogle Scholar
  62. DeGasperi, R., Li, S.-C., and Li, Y.-T., 1988, A GM2-specific beta-hexosaminidase from the roe of striped mullet (Mugil cephalus), J. Biol. Chem. 263: 1325 –1328.PubMedGoogle Scholar
  63. Dimpfel, W., and Habermann, E., 1977, Binding characteristics of 125I-labelled tetanus toxin to primary tissue cultures from mouse embryonic CNS, J. Neurochem. 29: 1111 – 1120.PubMedCrossRefGoogle Scholar
  64. Dimpfel, W., Moller, W., and Mengs, U., 1981, Ganglioside-induced neurite formation in cultured neuroblastoma cells, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair ( M. M. Rapport and A. Gorio, eds.), pp. 119–134, Raven Press, New York.Google Scholar
  65. Doherty, P., and Walsh, F. S., 1987, Ganglioside GM1 antibodies and B-cholera toxin bind specifically to embryonic chick dorsal root ganglion neurons but do not modulate neurite regeneration, J. Neurochem. 48: 1237–1244.PubMedCrossRefGoogle Scholar
  66. Doherty, P., Dickson, J. G., Flanigan, T. P., Leon, A., Toffano, G., and Walsh, F. S., 1985a, Molecular specificity of ganglioside effects on neurite regeneration of sensory neurons in vitro, Neurosci. Lett. 62: 193 – 198.PubMedCrossRefGoogle Scholar
  67. Doherty, P., Dickson, J. G., Flanigan, T. P., and Walsh, F. S., 1985b, Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones, J. Neurochem. 44: 1259 – 1265.PubMedCrossRefGoogle Scholar
  68. Dreyfus, H., Harth, S., Yusufi, A. N. K., Urban, P. F., and Mandel, P., 1980a, Sialyltransferase activities in two neuronal models: Retina and cultures of isolated neurons, in: Structure and Function of Gangliosides ( L. Svennerholm, P. Mandel, H. Dreyfus, and P.-F. Urban, eds.), pp. 227–237, Plenum Press, New York.CrossRefGoogle Scholar
  69. Dreyfus, H., Louis, J. C., Harth, S., and Mandel, P., 1980b, Gangliosides in cultured neurons, Neuroscience 5: 1647 – 1655.Google Scholar
  70. Dreyfus, H., Harth, S., Massarelli, R., and Louis, J. C., 1981, Mechanisms of differentiation in cultured neurons: Involvement of gangliosides, in: Gangliosides in Neurological and Neuromuscular Function, Development and Repair ( M. M. Rapport and A. Gorio, eds.), pp. 151 – 170, Raven Press, New York.Google Scholar
  71. Dreyfus, H., Ferret, B., Harth, S., Gorio, A., Freysz, L., and Massarelli, R., 1984, Effect of exogenous gangliosides on the morphology and biochemistry of cultured neurons, in: Ganglioside Structure, Function, and Biomedical Potential ( R. W. Ledeen R. K. Yu, M. M. Rapport, and K. Suzuki, eds.), pp. 513 – 524, Plenum Press, New York.CrossRefGoogle Scholar
  72. Ehrlich, Y. H., Davis, T. B., Bock, E., Kornecki, E., and Lenox, R. H., 1986, Ectoprotein kinase activity on the external surface of neural cells, Nature 320: 67 – 70.PubMedCrossRefGoogle Scholar
  73. Esmann, M., Marsh, D., Schwarzmann, G., and Sandhoff, K., 1988, Ganglioside—protein interactions: Spin-label electron spin resonance studies with (Na+,K+)-ATPase membranes, Biochemistry 27: 2398 – 2403.PubMedCrossRefGoogle Scholar
  74. Evans, W. H., and McIlwain, H., 1967, Excitability and ion content of cerebral tissues treated with alkylating agents, tetanus toxin, or neuraminidase, J. Neurochem. 14: 35 – 44.PubMedCrossRefGoogle Scholar
  75. Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R., and Tettamanti, G., 1984, Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1, J. Neurochem. 42: 299 – 305.PubMedCrossRefGoogle Scholar
  76. Ferrari, G., Fabris, M., and Gorio, A., 1983, Gangliosides enhance neurite outgrowth in PC12 cells, Dey. Brain Res. 8: 215–222.CrossRefGoogle Scholar
  77. Ferret, B., Massarelli, R., Freysz, L., and Dreyfus, H., 1987, Effect of exogenous gangliosides on the metabolism of inositol compounds in chick neurons in culture, C. R. Acad. Sci. 304: 97 – 99.Google Scholar
  78. Ferwerda, W., Blok, C. M., and Heijlman, J., 1981, Turnover of free sialic acid, CMP-sialic acid, and bound sialic acid in rat brain, J. Neurochem. 36: 1492 – 1499.PubMedCrossRefGoogle Scholar
  79. Fishman, P. H., 1982, Role of membrane gangliosides in the binding action of bacterial toxins, J. Membr. Biol. 69: 85 – 97.PubMedCrossRefGoogle Scholar
  80. Fishman, P. H., 1986, Recent advances in identifying the functions of gangliosides, Chem. Phys. Lipids 42: 137 – 151.PubMedCrossRefGoogle Scholar
  81. Fishman, P. H., Simmons, J. L., Brady, R. O., and Freese, E., 1974, Induction of glycolipid biosynthesis by sodium butyrate in HeLa cells, Biochem. Biophys. Res. Commun. 59: 292 – 299.PubMedCrossRefGoogle Scholar
  82. Fleischer, B., 1977, Localization of some glycolipid glycosylating enzymes in the Golgi apparatus of rat kidney, J. Supramol. Struct. 7: 79 – 89.PubMedCrossRefGoogle Scholar
  83. Forman, D. S., and Ledeen, R. W., 1972, Axonal transport of gangliosides in the goldfish optic nerve, Science 177: 630 – 633.PubMedCrossRefGoogle Scholar
  84. Freysz, L., Farooqui, A. A., Adamczewska-Goncerzewicz, Z., and Mandel, P., 1979, Lysosomal hydro-lases in neuronal, astroglial, and oligodenroglial enriched fractions of rabbit and beef brain, J. Lipid Res. 20: 503 – 508.PubMedGoogle Scholar
  85. Fujibayashi, S., and Wenger, D. A., 1986, Biosynthesis of the sulfatide/GM1 activator protein (SAP-1) in control and mutant cultured skin fibroblasts, Biochim. Biophys. Acta 875: 554 – 562.PubMedCrossRefGoogle Scholar
  86. Furst, W., Vogel, A., Lee-Vaupel, M., Conzelmann, E., and Sandhoff, K., 1986, Glycosphingolipid activator proteins, in: Enzymes of Lipid Metabolism 11 ( L. Freysz, H. Dreyfus, R. Massarelli, and S. Gatt, eds.), pp. 314 – 338, Plenum Press, New York.Google Scholar
  87. Furst, W., Machleidt, W., and Sandhoff, K., 1988, The precursor of sulfatide activator protein is processed to three different proteins, Biol. Chem. Hoppe-Seyler 369: 317 – 328.PubMedCrossRefGoogle Scholar
  88. Furukawa, K., Higgins, T., and Roth, S., 1985, An affinity-purified major histocompatibility complex (MCH) antigen with high N-acetylgalactosaminyltransferase activity, J. Cell Biol. 101: 309a.Google Scholar
  89. Gammon, C. M., Goodrum, J. F., Toews, A. D., Okabe, A., and Morell, P., 1985, Axonal transport of glycoconjugates in the rat visual system, J. Neurochem. 44: 376 – 387.PubMedCrossRefGoogle Scholar
  90. Gammon, C. M., Vaswani, K. K., and Ledeen, R. W., 1987, Isolation of two glycolipid transfer proteins from bovine brain: Reactivity toward gangliosides and neutral glycosphingolipids, Biochemistry 26: 6239 – 6243.PubMedCrossRefGoogle Scholar
  91. Gershoni, J. M., Lapidot, M., Zakai, N., and Loyter, A., 1986, Protein blot analysis of virus receptors: Identification and characterization of the Sendai virus receptor, Biochim. Biophys. Acta 856: 19 – 26.PubMedCrossRefGoogle Scholar
  92. Ghidoni, R. Trinchera, M., Venerando, B. Fiorilli, A., and Tettamanti, G., 1986a, Metabolism of exogenous GM1 and related glycolipids in the rat, in: Gangliosides and Neuronal Plasticity (G. Tettamanti, R. W. Ledeen, K. Sandhoff, Y. Nagai, and G. Toffano, eds.), pp. 183–200, Liviana Press, Padova.Google Scholar
  93. Ghidoni, R., Trinchera, M., Venerando, B., Fiorilli, A., Sonnino, S., and Tettamanti, G., 1986b, Incorpo- ration and metabolism of exogenous GM1 ganglioside in rat liver, Biochem. J. 237: 147 – 155.PubMedGoogle Scholar
  94. Goldenring, J. R., Otis, L. C., Yu, R. K., and DeLorenzo, R. J., 1985, Calcium/ganglioside-dependent protein kinase activity in rat brain membrane, J. Neurochem. 44: 1129 – 1134.CrossRefGoogle Scholar
  95. Gorio, A., Cannignoto, G., Facci, L., and Finesso, M., 1980, Motor nerve sprouting induced by gang- lioside treatment. Possible implications for gangliosides on neuronal growth, Brain Res. 197: 236 – 241.PubMedCrossRefGoogle Scholar
  96. Gorio, A., Marini, P., and Zanoni,R., 1983, Muscle reinnervation. III. Motoneuron sprouting capacity, enhancement by exogenous gangliosides, Neuroscience 8: 417 – 429.PubMedCrossRefGoogle Scholar
  97. Gradkowska, M., Skup, M., Kiedrowski, L., Calzolari, S., and Oderfeld-Nowak, B., 1986, The effect of GM1 ganglioside on cholinergic and serotoninergic systems in the rat hippocampus following partial denervation is dependent on the degree of fiber degeneration, Brain Res. 375: 417 – 422.PubMedCrossRefGoogle Scholar
  98. Grafstein, B., Yip, H. K., and Mein, H., 1982, Techniques for improving axonal regeneration: Assay in goldfish optic nerve, in: Nervous System Regeneration ( A. M. Giuffrida-Stella, B. Haber, G. Hashim, and J. R. Perez-Polo, eds.), pp. 105 – 118, Liss, New York.Google Scholar
  99. Griffiths, S. L., Perkins, R. M., Strueli, C. H., and Critchley, D. R., 1986, Variants of BALB/c 3T3 cells lacking complex gangliosides retain a fibronectin matrix and spread normally on fibronectin-coated substrates, J. Cell Biol. 102: 469 – 476.PubMedCrossRefGoogle Scholar
  100. Hadjiconstantinou, M., and Neff, N. H., 1988, Treatment with GM1 ganglioside restores striatal dopamine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse, J. Neurochem., 51: 1190–1196.PubMedCrossRefGoogle Scholar
  101. Hadjiconstantinou, M., Cavalla, D., Anthopoulou, E., Laird, H. E., II, and Neff, N. H., 1985, N-methyl-4phenyl-1,2,3,6-tetrahydropyridine increases acetylcholine and decreases dopamine in mouse striatum, both responses are blocked by anticholinergic drugs, J. Neurochem. 45: 1957 – 1959.PubMedCrossRefGoogle Scholar
  102. Hakomori, S., 1970, Cell density-dependent changes of glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells, Proc. Natl. Acad. Sci. USA 67: 1741 – 1747.PubMedCrossRefGoogle Scholar
  103. Hakomori, S.-I., 1981, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Annu. Rev. Biochem. 50: 733–764.CrossRefGoogle Scholar
  104. Hakomori, S., and Kannagi, R., 1983, Glycosphingolipids as tumor-associated and differentiation markers, J. Natl. Cancer Inst. 71: 231 – 251.Google Scholar
  105. Haider, S., and Majumder, C. C., 1986, Phosphorylation of external cell surface protein by an endogenous ecto-protein kinase of goat epididymal intact spermatozoa, Biochim. Biophys. Acta 887: 291 – 303.CrossRefGoogle Scholar
  106. Haley, J. E., Wisniewski, H. M., and Ledeen, R. W., 1979, Extra-axonal diffusion in the rabbit optic system: A caution in axonal transport studies, Brain Res. 179: 69 – 76.PubMedCrossRefGoogle Scholar
  107. Hanai, N., Nores, G., Torres-Mendez, C.-R., and Hakomori, S.-I., 1987, Modified ganglioside as a possible modulator of transmembrane signaling mechanism through growth factor receptors: A preliminary note, Biochem. Biophys. Res. Commun. 147: 127 – 134.PubMedCrossRefGoogle Scholar
  108. Handa, S., and Burton, R. M., 1969, Biosynthesis of glycolipids: Incorporation of N-acetyl galactosamine by rat brain particulate preparation, Lipids 4: 589 – 598.PubMedCrossRefGoogle Scholar
  109. Hannun, Y. A., and Bell, R. M., 1987, Lysosphingolipids inhibit protein kinase C: Implications for the sphingolipidoses, Science 235: 670–674.PubMedCrossRefGoogle Scholar
  110. Harris, P. L., and Thornton, E. R., 1978, Carbon-13 and proton nuclear magnetic resonance studies of gangliosides, J. Am. Chem. Soc. 100: 6738 – 6745.CrossRefGoogle Scholar
  111. Harry, G. J., Goodrum, J. F., Toews, A. D., and Morell, P., 1987, Axonal transport characteristics of gangliosides in sensory axons of rat sciatic nerve, J. Neurochem. 48: 1529 – 1536.PubMedCrossRefGoogle Scholar
  112. Hashimoto, Y., Suzuki, A., Yamakawa, T., Miyashita, N., and Moriwaki, K., 1983, Expression of GM1 and GD1a in mouse liver is linked to the H-2 complex on chromosome 17, J. Biochem. 94: 2043 – 2048.PubMedGoogle Scholar
  113. Hauw, J. J., Fenelon, S., Boutry, J.-M., Nagai, Y., and Escourolle, R., 1981, Effects of brain gangliosides on neurite growth in guinea pig spinal ganglia tissue cultures and on fibroblast cell cultures, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair (M. M. Rapport and A. Gorio, eds.), pp. 171 – 176, Raven Press, New York.Google Scholar
  114. Higashi, H., Basu, M., and Basu, S., 1985, Biosynthesis in vitro of disialosylneolactotetraosyl-ceramide by a solubilized sialyltransferase from embryonic chicken brain, J. Biol. Chem. 260: 824 – 828.PubMedGoogle Scholar
  115. Holm, M., and Svennerholm, L., 1972, Biosynthesis and biodegradation of rat brain gangliosides studied in vivo, J. Neurochem. 19:609–622Google Scholar
  116. Igarashi, M., Komiya, Y., and Kurokawa, M., 1985, CMP-sialic acid, the sole sialosyl donor, is intraaxonally transported, FEBS Lett. 192: 239–242.PubMedCrossRefGoogle Scholar
  117. Jeserich, G.,,Breer, H., and Duvel, M., 1981, Effect of exogenous gangliosides on synaptosomal membrane ATPase activity, Neurochem. Res. 6: 465–474.CrossRefGoogle Scholar
  118. Jones, J. P., Ramsey, R. B., Aexel, R. T., and Nicholas, H. J., 1972, Lipid biosynthesis in neuron-enriched and glial-enriched fractions of rat brain: Ganglioside biosynthesis, Life Sci. 11: 309 – 315.Google Scholar
  119. Jonsson, G., Gorio, A., Hallman, H., Janigro, D., Kojima, H., Luthman, J., and Zanoni, R., 1984, Effects of GM1 ganglioside on developing and mature serotonin and noradrenaline neurons lesioned by selec-tive neurotoxins, J. Neurosci. Res. 12: 459 – 475.PubMedCrossRefGoogle Scholar
  120. Kalia, M., and DiPalma, J. R., 1982, Ganglioside-induced acceleration of axonal transport following nerve crush injury in the rat, Neurosci. Lett. 34: 1 – 5.PubMedCrossRefGoogle Scholar
  121. Kanda, S., Inoue, K., Nojima, S., Utsumi, H., and Weigandt, H., 1982, Incorporation of a ganglioside and a spin-labeled ganglioside analogue into cell and liposomal membranes, J. Biochem. 91: 2095 – 2098.PubMedGoogle Scholar
  122. Karpiak, S. E., 1983, Ganglioside treatment improves recovery of alternation behavior after unilateral entorhinal cortex lesion, Exp. Neurol. 81: 330 – 339.PubMedCrossRefGoogle Scholar
  123. Karpiak, S. E., Li, Y. S., and Mahadik, S. P., 1987, Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: Protection of membrane function, Stroke 18: 184 – 187.PubMedCrossRefGoogle Scholar
  124. Kato, I., and Naiki, M., 1976, Ganglioside and rabbit erythrocyte membrane receptor for staphylococcal alpha-toxin, Infect. Immun. 13: 289–291.PubMedGoogle Scholar
  125. Katoh-Semba, R., Skaper, S. D., and Varon, S., 1984, Interaction of GM1 ganglioside with PC12 pheochromocytoma cells: Serum and NGF-dependent effects on neuritic growth (and proliferation), J. Neurosci. Res. 12: 299 – 310.PubMedCrossRefGoogle Scholar
  126. Katoh-Semba, R., Facci, L., Skaper, S. D., and Varon, S., 1986, Gangliosides stimulate astroglial cell proliferation in the absence of serum, J. Cell. Physiol. 126: 147 – 153.PubMedCrossRefGoogle Scholar
  127. Kaufman, B., Basu, S., and Roseman, S., 1967, Studies on the biosynthesis of gangliosides, in: Inborn Disorders of Sphingolipid Metabolism ( A. M. Aronson and B. W. Volk, eds.), pp. 193–214, Pergamon Press, New York.Google Scholar
  128. Kaufman, B., Basu, S., and Roseman, S., 1968, Enzymatic synthesis of disialogangliosides from monosial- ogangliosides by sialyltransferases from embryonic chicken brain, J. Biol. Chem. 243: 5804 – 5807.PubMedGoogle Scholar
  129. Keenan, T. W., and Morre, D. J., 1975, Glycosyltransferases: Do they exist on the surface membrane of mammalian cells? FEBS Lett. 55: 8–13.PubMedCrossRefGoogle Scholar
  130. Keenan, T. W., Morre, D. J., and Basu, S., 1974, Ganglioside biosynthesis. Concentration of glycosphingolipid glycosyltransferases in Golgi apparatus from rat liver, J. Biol. Chem. 249: 310 – 315.PubMedGoogle Scholar
  131. Kim, J. Y. H., Goldenring, J. R., DeLorenzo, R. J., and Yu, R. K., 1986, Gangliosides inhibit phospholipid-sensitive Cat±-dependent kinase phosphorylation of rat myelin basic protein, J. Neurosci. Res. 15: 159–166.PubMedCrossRefGoogle Scholar
  132. Kitamura, M., Iwamori, M., and Nagai, Y., 1980, Interaction between clostridium botulinum neurotoxin and gangliosides, Biochim. Biophys. Acta 628: 328–335.PubMedCrossRefGoogle Scholar
  133. Klein, D., Leinekugel, P., Pohlentz, G., Schwarzmann, G., and Sandhoff, K., 1988, Metabolism and intracellular transport of gangliosides in cultured fibroblasts, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects ( R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 247 – 258.Google Scholar
  134. Kleinbeckel, D., 1982, Acceleration of muscle re-innervation in rats by ganglioside treatment: An electromyographic study, Eur. J. Pharmacol. 80: 243 – 245.CrossRefGoogle Scholar
  135. Kleinman, H. K., Martin, G. R., and Fishman, P. H., 1979, Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen, Proc. Natl. Acad. Sci. USA 76: 3367 – 3371.PubMedCrossRefGoogle Scholar
  136. Kojima, H., Gorio, A., Janigro, D., and Jonsson, G., 1984, GM1 ganglioside enhances regrowth of noradrenaline nerve terminals in rat cerebral cortex lesioned by the neurotoxin 6-hydroxydopamine, Neuroscience 13: 1011 – 1022.PubMedCrossRefGoogle Scholar
  137. Koulakoff, A., Bizzini, B., and Berwald-Netter, Y., 1983, Neuronal acquisition of tetanus toxin binding sites: Relationship with the last mitotic cycle, Dev. Biol. 100: 350 – 357.PubMedCrossRefGoogle Scholar
  138. Kreutter, D., Kim, J. Y. H., Goldenring, J. R., Rasmussen, H., Ukomadu, C., DeLorenzo, R. J., and Yu, R. K., 1987, Regulation of protein kinase C activity by gangliosides, J. Biol. Chem. 262: 1633 – 1637.PubMedGoogle Scholar
  139. Kytzia, H.-J., and Sandhoff, K., 1985, Evidence for two different active sites on human beta-hex-osaminidase A, J. Biol. Chem. 260: 7568 – 7572.PubMedGoogle Scholar
  140. Kytzia, H.-J., Hinrichs, U., Maire, I., Suzuki, K., and Sandhoff, K., 1983, Variant of GM2-gangliosidosis with hexosaminidase A having a severely changed substrate specificity, EMBO J. 2: 1201 – 1205.PubMedGoogle Scholar
  141. Laitinen, J., Lopponen, R., Merenmies, J., and Rauvala, H., 1987, Binding of laminin to brain gangliosides and inhibition of laminin—neuron interaction by the gangliosides, FEBS Lett. 217: 94 – 100.PubMedCrossRefGoogle Scholar
  142. Landa, C. A., Maccioni, H. J. F., and Caputto, R., 1979, The site of synthesis of gangliosides in the chick optic system, J. Neurochem. 33: 825 – 838.PubMedCrossRefGoogle Scholar
  143. Landa, C. A., Defilpo, S. S., Maccioni, H. J. F., and Caputto, R., 1981, Disposition of gangliosides and sialosylglycoproteins in neuronal membranes, J. Neurochem. 37: 813 – 823.PubMedCrossRefGoogle Scholar
  144. Lang, W., 1981, Phannacokinetic studies of 3H-labeled exogenous gangliosides injected intramuscularly into rats, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair ( M. M. Rapport and A. Gorio, eds.), pp. 241 – 251, Raven Press, New York.Google Scholar
  145. Langenbach, R., and Kennedy, S., 1978, Gangliosides and their cell density-dependent changes in control and chemically transformed C3H/10T1/2 cells, Exp. Cell Res. 112: 361 – 372.PubMedCrossRefGoogle Scholar
  146. Ledeen, R. W., 1983, Gangliosides, in: Handbook of Neurochemistry, Vol. 3 ( A. Lajtha, ed.), pp. 41 – 90, Plenum Press, New York.Google Scholar
  147. Ledeen, R. W., 1984, Biology of gangliosides: Neuritogenic and neuronotrophic properties, J. Neurosci. Res. 12: 147 – 159.PubMedCrossRefGoogle Scholar
  148. Ledeen, R. W., and Cannella, M. S., 1987, The neuritogenic effect of gangliosides in cell Cultures, in: Gangliosides and Modulation of Neuronal Functions ( H. Rahmann, ed.), pp. 491–500, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  149. Ledeen, R. W., Skrivanek, J. A., Tim, L. J., Margolis, R. K., and Margolis, R. U., 1976, Gangliosides of the neuron: Localization and origin, Adv. Exp. Med. Biol. 71: 83 – 104.Google Scholar
  150. Ledeen, R. W., Skrivanek, J. A., Nunez, J., Sclafani, J. R., Norton, W. T., and Farooq, M., 1981, Implications of the distribution and transport of gangliosides in the nervous system, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair ( M. M. Rapport and A. Gorio, eds.), pp. 211 – 223, Raven Press, New York.Google Scholar
  151. Ledeen, R. W., Aquino, D. A., Sbaschnig-Agler, M., Gammon, C. M., and Vaswani, K. K., 1987, Fundamentals of neuronal transport of gangliosides. Functional implications, in: Gangliosides and Modulation of Neuronal Functions, Vol. H7 (H. Rahmann, ed.), pp. 259 – 274, Springer-Verlag, Berlin.Google Scholar
  152. Ledeen, R. W., Hogan, E. L., Tettamanti, G., Yates, A. J., and Yu, R. K. (eds.), 1988, New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects, Vol. 14, Liviana Press, Padova.Google Scholar
  153. Lee, A. G., 1977, Annular events: Lipid—protein interactions, Trends Biochem. Sci. 2: 231 – 233.CrossRefGoogle Scholar
  154. Leon, A., Facci, L., Toffano, G., Sonnino, S., and Tettamanti, G., 1981, Activation of (Na+,K+)ATPase by nanomolar concentrations of GM1 ganglioside, J. Neurochem. 37: 350 – 357.PubMedCrossRefGoogle Scholar
  155. Leon, A., Facci, L., Benvegnu, D., and Toffano, G., 1982, Morphological and biochemical effects of gangliosides in neuroblastoma cells, Dev. Neurosci. 5 :108–114.Google Scholar
  156. Leon, A. D., Benvegnu, D., Dal Toso, R., Presti, D., Facci, L., Giorgi, O., and Toffano, G., 1984, Dorsal root ganglia and nerve growth factor: A model for understanding the mechanism of GM1 effects on neuronal repair, J. Neurosci. Res. 12: 277 – 287.PubMedCrossRefGoogle Scholar
  157. Leon, A., Dal Toso, R., Presti, D., Benvegnu, D., Faci, L., Kirschner, G., Tettamanti, G., and Toffano, G., 1988, Development and survival of neurons in dissociated fetal mesencephalic serum-free cell cultures. II. Modulatory effects of gangliosides, J. Neurosci. 8: 746 – 753.PubMedGoogle Scholar
  158. Leskawa, K. C., and Hogan, E. L., 1985, Quantitation of the in vitro neuroblastoma response to exogenous, purified gangliosides, J. Neurosci. Res. 13: 539 – 550.PubMedCrossRefGoogle Scholar
  159. Li, S.-C., Nakamura, T., Ogamo, A., and Li, Y.-T., 1979, Evidence for the presence of two separate protein activators for the enzymic hydrolysis of GM1 and GM2 gangliosides, J. Biol. Chem. 254: 10592 – 10595.PubMedGoogle Scholar
  160. Li, S.-C., Sonnino, S., Tettamanti, G., and Li, Y.-T., 1988, Characterization of a nonspecific activator protein for the enzymatic hydrolysis of glycolipids, J. Biol. Chem. 263: 6588 – 6591.PubMedGoogle Scholar
  161. Li, Y. S., Mahadik, S. P., Rapport, M. M., and Karpiak, S. E., 1986, Acute effects of GM1 ganglioside: Reduction in both behavioral asymmetry and loss of Na+-K+ ATPase after nigrostriatal transection, Brain Res. 377: 292 – 297.PubMedCrossRefGoogle Scholar
  162. Li, Y.-T., Mazzotta, M. Y., Wan, C. C., Orth, R., and Li, S.-C., 1973, Hydrolysis of Tay—Sachs ganglioside by 3-hexosaminidase A of human liver and urine, J. Biol. Chem. 248: 7512 – 7515.PubMedGoogle Scholar
  163. Maccioni, H. J., Arce, A., and Caputto, R., 1971, The biosynthesis of gangliosides, labelling of rat brain gangliosides in vivo, Biochem. J. 125: 1131 – 1137.PubMedGoogle Scholar
  164. Maccioni, H. J. F., Defilpo, S. S., Landa, C. A., and Caputto, R., 1978, The biosynthesis of brain gangliosides. Ganglioside-glycosylating activity in rat brain neuronal perikarya fraction, Biochem. J. 174: 673 – 680.PubMedGoogle Scholar
  165. Maccioni, H. J. F., Panzetta, P., Arrieta, D., and Caputto, R., 1984a, Ganglioside glycosyltransferase activities in the cerebral hemispheres from developing rat embryos, Int. J. Dev. Neurosci. 2: 13–19.CrossRefGoogle Scholar
  166. Maccioni, H. J. F., Panzetta, P., and Arrieta, D., 1984b, Some properties of uridine-5’-diphospho-N- acetylgalactosamine:hematoside N-acetylgalactosaminyltransferase at early and late stages of embryonic development of chicken retina, Int. J. Dev. Neurosci. 2:259–266.Google Scholar
  167. Macher, B. A., Lockney, M., Moskal, J. R., Fung. Y. K., and Sweeley, C. C., 1978, Studies on the mechanism of butyrate-induced morphological changes in KB cells, Exp. Cell Res. 117: 95 – 102.Google Scholar
  168. Mahuran, D. A., Novak, A., and Lowden, J. A., 1985, The lysosomal hexosaminidase isozymes, in Isozymes (M. O. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds.), pp. 229 – 288, Liss, New York.Google Scholar
  169. Maier, C. E., and Singer, M., 1984, Gangliosides stimulate protein synthesis, growth, and axon number of regenerating limb buds, J. Comp. Neurol. 230: 459–464.PubMedCrossRefGoogle Scholar
  170. Marchase, R. B., 1977, Biochemical investigations of retinotectal adhesive specificity, J. Cell Biol. 75: 237 – 257.PubMedCrossRefGoogle Scholar
  171. Margolis, R. K., Salton, S. R. J., and Margolis, R. U., 1983, Complex carbohydrates of cultured PC12 pheochromocytoma cells. Effects of nerve growth factor and comparison with neonatal and mature rat brain, J. Biol. Chem. 258: 4110 – 4117.PubMedGoogle Scholar
  172. Marini, P., Vitadello, M., Biachi, R., Triban, C., and Gorio, A., 1986, Impaired axonal transport of acetylcholinesterase in the sciatic nerve of alloxan-diabetic rats: Effect of ganglioside treatment, Diabetologia 29: 254 – 258.PubMedCrossRefGoogle Scholar
  173. Markwell, M. A. K., Svennerholm, L., and Paulson, J. C., 1981, Specific gangliosides function as host cell receptors for Sendai virus, Proc. Natl. Acad. Sci. USA 78: 5406 – 5410.PubMedCrossRefGoogle Scholar
  174. Massarelli, R., Ferret, B., Gorio, A., Durand, M., and Dreyfus, H., 1985, The effect of exogenous gangliosides on neurons in culture: A morphometric analysis, Int. J. Dev. Neurosci. 3: 341 – 348.CrossRefGoogle Scholar
  175. Matsui, Y., Lombard, D., Hoflack, B., Harth, S., Massarelli, R., Mandel, P., and Dreyfus, H., 1983, Ectoglycosyltransferase activities at the surface of cultured neurons, Biochem. Biophys. Res. Commun. 113: 446 – 453.PubMedCrossRefGoogle Scholar
  176. Matta, S. G., Yorke, G., and Roisen, F. J., 1986, Neuritogenic and metabolic effects of individual gangliosides and their interaction with nerve growth factor in cultures of neuroblastoma and pheochromocytoma, Dev. Brain Res. 27: 243 – 252.CrossRefGoogle Scholar
  177. McIlwain, H., 1960, Chemical Exploration of the Brain: A Study of Excitability and Ion Movement, Elsevier, Amsterdam.Google Scholar
  178. McIlwain, H., 1961, Characterization of naturally occurring materials which restore excitability to isolated cerebral tissues, Biochem. J. 78: 24 – 32.PubMedGoogle Scholar
  179. McLawhon, R. W., Schoon, G. S., and Dawson, G., 1981, Possible role of cyclic AMP in the receptor-mediated regulation of glycosyltransferase activities in neurotumor cell lines, J. Neurochem. 37: 132 – 139.PubMedCrossRefGoogle Scholar
  180. Mengs, U., and Stotzem, C. D., 1987, Ganglioside treatment and nerve regeneration: A morphological study after nerve crush in rats, Eur. J. Pharmacol. 142: 419 – 424.PubMedCrossRefGoogle Scholar
  181. Miller-Podraza, H., and Fishman, P. H., 1982, Translocation of newly synthesized gangliosides to the cell surface, Biochemistry 21: 3265 – 3270.PubMedCrossRefGoogle Scholar
  182. Miller-Podraza, H., Bradley, R. M., and Fishman, P. H., 1982, Biosynthesis and localization of gangliosides in cultured cells, Biochemistry 21: 3260 – 3265.PubMedCrossRefGoogle Scholar
  183. Mirsky, R., Wendon, L. M. B., Black, P., Stolkin, C., and Bray, D., 1978, Tetanus toxin: A cell surface marker for neurones in culture, Brain Res. 148: 251 – 259.PubMedCrossRefGoogle Scholar
  184. Morgan, J. I., and Seifert, W., 1979, Growth factors and gangliosides: A possible new perspective in neuronal growth control, J. Supramol. Struct. 10: 111 – 124.PubMedCrossRefGoogle Scholar
  185. Morre, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and interconversions among endomembranes, Biochim. Biophys. Acta 559: 71 – 152.PubMedCrossRefGoogle Scholar
  186. Moskal, J. R., Gardner, D. A., and Basu, S., 1974, Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells, Biochem. Biophys. Res. Commun. 61: 751 – 758.PubMedCrossRefGoogle Scholar
  187. Moss, J., Fishman, P. H., Manganiello, V. C., Vaughan, M., and Brady, R. 0., 1976, Functional incorporation of ganglioside into intact cells: Induction of choleragen responsiveness, Proc. Natl. Acad. Sci. USA 73: 1034 – 1037.CrossRefGoogle Scholar
  188. Moss, J., Osborne, J. C., Jr., Fishman, P. H., Nakaya, S., and Robertson, D. C., 1981, Escherichia coli heat-labile enterotoxin. Ganglioside specificity and ADP-ribosyltransferase activity, J. Biol. Chem. 256: 12861 – 12865.PubMedGoogle Scholar
  189. Mugnai, G., Tombaccini, D., and Ruggieri, S., 1984, Ganglioside composition of substrate-adhesion sites of normal and virally-transformed BALB/C 3T3 cells, Biochem. Biophys. Res. Commun. 125: 14 2148.Google Scholar
  190. Murakami-Murofushi, K., Tadano, K., Koyama, I., and Ishizuka, I., 1981, A trisialoganglioside GT3 of hog kidney. Structure and biosynthesis in vitro, J. Biochem. 90: 1817 –1820.Google Scholar
  191. Murray, N., and Steck, A. J., 1986, Activation of myelin protein kinase by diacylglycerol and 443-phorbol 12-myristate 13-acetate, J. Neurochem. 46: 1655 – 1657.PubMedCrossRefGoogle Scholar
  192. Myerowitz, R., and Proia, R. L., 1984, cDNA clone for the a chain of human ß-hexosaminidase: Deficiency of a chain mRNA in Ashkenazi Tay—Sachs fibroblasts, Proc. Natl. Acad. Sci. USA 81: 5394 – 5398.Google Scholar
  193. Myerowitz, R., Piekarz, R., Neufeld, E. F., Shows, T. B., and Suzuki, K., 1985, Human n-hexosaminidase a-chain: Coding sequence and homology with the a-chain, Proc. Natl. Acad. Sci. USA 82: 7830 – 7834.PubMedCrossRefGoogle Scholar
  194. Nagai, Y., and Tsuji, S., 1988, Cell biological significance of gangliosides in neural differentiation and development: Critique and proposals, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects ( R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 329 – 350.Google Scholar
  195. Nagai, Y., Nakaishi, H., and Sanai, Y., 1986, Gene transfer as a novel approach to the gene-controlled mechanism of the cellular expression of glycosphingolipids, Chem. Phys. Lipids 42: 91 – 103.PubMedCrossRefGoogle Scholar
  196. Nakaishi, H., Sanai, Y., Shiroki, K., and Nagai, Y., 1988a, Analysis of cellular expression of gangliosides by gene transfection. I. GD3 expression in myc-transfected and transformed 3Y1 correlates with anchorage-independent growth activity, Biochem. Biophys. Res. Commun. 150: 760 – 765.PubMedCrossRefGoogle Scholar
  197. Nakaishi, H., Sanai, Y., Shibuya, M., and Nagai, Y., 1988b, Analysis of cellular expression of gangliosides by gene transfection. II. Rat 3Y1 cells transformed with several DNAs containing oncogenes (fes, fps, ras & src) invariably express sialosylparagloboside, Biochem. Biophys. Res. Commun. 150: 766 – 774.PubMedCrossRefGoogle Scholar
  198. Nakajima, J., Tsuji, S., and Nagai, Y., 1986, Bioactive gangliosides: Analysis of functional structures of the tetrasialoganglioside GQ1b which promotes neurite outgrowth, Biochim. Biophys. Acta 876:65–71.Google Scholar
  199. Navon, R., Argov, Z., and Frisch, A., 1986, Hexosaminidase A deficiency in adults, Am. J. Med. Genet. 24: 179 – 196.PubMedCrossRefGoogle Scholar
  200. Neuenhofer, S., Conzelmann, E., Schwarzmann, G., Egge, H., and Sandhoff, K., 1986, Occurrence of lysoganglioside lyso-GM2 (II3-Neu-5-Ac-gangliotriaosylsphingosine) in GM2 gangliosidosis brain, Biol. Chem. Hoppe-Seyler 367: 241 – 244.PubMedCrossRefGoogle Scholar
  201. Ng, S.-S., and Dain, J. A., 1977, Sialyltransferases in rat brain: Reaction kinetics, product analyses, and multiplicities of enzyme species, J. Neurochem. 29: 1075 – 1083.PubMedCrossRefGoogle Scholar
  202. Norden, A. G., and O’Brien, J. S., 1975, An electrophoretic variant of ß-galactosidase with altered catalytic properties in a patient with GM1 gangliosidosis, Proc. Natl. Acad. Sci. USA 72: 240 – 244.PubMedCrossRefGoogle Scholar
  203. Nores, G. A., and Caputto, R., 1984, Inhibition of the UDP-N-acetylgalactosamine: GM3 N-acetylgalac- tosaminyl transferase by gangliosides, J. Neurochem. 42: 1205 – 1211.PubMedCrossRefGoogle Scholar
  204. Norido, F., Canella, R., and Aporti, F., 1981, Acceleration of nerve regeneration by gangliosides estimated by the somatosensory evoked potentials (SEP), Experientia 37: 301–302.PubMedCrossRefGoogle Scholar
  205. Ohman, R., Rosenberg, A., and Svennerholm, L., 1970, Human brain sialidase, Biochemistry 9: 3774–3782.Google Scholar
  206. Ohno, K., and Suzuki, K., 1988a, Mutation in GM2-gangliosidosis B1 variant, J. Neurochem. 50: 316 – 318.PubMedCrossRefGoogle Scholar
  207. Ohno, K., and Suzuki, K., 1988b, A splicing defect due to an exon—intron junctional mutation results in abnormal 13-hexosaminidase chain mRNAs in Ashkenazi Jewish patients with Tay—Sachs disease, Biochem. Biophys. Res. Commun. 153: 463 – 469.PubMedCrossRefGoogle Scholar
  208. Okada, S., and O’Brien, J. S., 1968, Generalized gangliosidosis: Beta-galactosidase deficiency, Science 160: 1002 – 1004.PubMedCrossRefGoogle Scholar
  209. Pacuszka, T., Duffard, R. O., Nishimura, R. N., Brady, R. O., and Fishman, P. H., 1978, Biosynthesis of bovine thyroid gangliosides, J. Biol. Chem. 253: 5839 – 5846.PubMedGoogle Scholar
  210. Panzetta, P., Maccioni, H. J. F., and Caputto, R., 1980, Synthesis of retinal gangliosides during chick embryonic development, J. Neurochem. 35 :100–108.Google Scholar
  211. Partington, C. R., and Daly, J. W., 1979, Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes, Mol. Pharmacol. 15: 484 – 491.PubMedGoogle Scholar
  212. Patt, L. M., Itaya, K., and Hakomori, S.-I., 1978, Retinol induces density-dependent growth inhibition and changes in glycolipids and LETs, Nature 273: 379 – 381.PubMedCrossRefGoogle Scholar
  213. Perkins, R. M., Kellie, S., Patel, B., and Critchley, D. R., 1982, Gangliosides as receptors for fibronectin? Exp. Cell Res. 141: 231 – 243.PubMedCrossRefGoogle Scholar
  214. Pohlentz, G., Klein, D., Schwarzmann, G., Schmitz, D., and Sandhoff, K., 1988, Both GA2-, GM2-, and GD2 synthetases and GMIb-, GD1a-, and GTIb synthases are single enzymes in Golgi vesicles from rat liver, Proc. Natl. Acad. Sci. USA, 85: 7044 – 7048.PubMedCrossRefGoogle Scholar
  215. Preti, A., Fiorilli, A., Lombardo, A., Caimi, L., and Tettamanti, G., 1980, Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex, J. Neurochem. 35: 281 – 296.PubMedCrossRefGoogle Scholar
  216. Proia, R. L., and Neufeld, E. F., 1982, Synthesis of ß-hexosaminidase in cell-free translation and in intact fibroblasts: An insoluble procedure a-chain in a rare form of Tay—Sachs disease, Proc. Natl. Acad. Sci. USA 79: 6360 – 6364.PubMedCrossRefGoogle Scholar
  217. Purpura, D. P., and Suzuki, K., 1976, Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease, Brain Res. 116: 1 – 21.PubMedCrossRefGoogle Scholar
  218. Radin, N. S., Brenkert, A., Arora, R., Sellinger, O. Z., and Flangas, A. I., 1972, Glial and neuronal localization of cerebroside-metabolizing enzymes, Brain Res. 39: 163 – 169.PubMedCrossRefGoogle Scholar
  219. Ragahavan, S. S., Rhoads, D. B., and Kanfer, J. N., 1972, Acid hydrolases in neuronal and glial enriched fractions of rat brain, Biochim. Biophys. Acta 268: 755 – 760.CrossRefGoogle Scholar
  220. Rahmann, H., 1983, Functional implications of gangliosides in synaptic transmission (critique), Neurochem. Int. 5: 539 – 547.PubMedCrossRefGoogle Scholar
  221. Rahman, H., 1987, Brain gangliosides, bio-electrical activity and post-stimulation effects, in: Gangliosides and Modulation of Neuronal Functions ( H. Rahman, ed.), pp. 501 – 521, Springer, Berlin.CrossRefGoogle Scholar
  222. Ramirez, J. J., Fass, B., Karpiak, S. E., and Steward, 0., 1987, Ganglioside treatments reduce locomotor hyperactivity after bilateral lesions of the entorhinal cortex, Neurosci. Lett. 75: 283 – 287.PubMedCrossRefGoogle Scholar
  223. Reith, M., Morgan, I. G., Gombos, G., Breckenridge, W. C., and Vincendon, G., 1972, Synthesis of synaptic glycoproteins. I. The distribution of UDP-galactose:N-acetyl glucosamine galactosyl trans- ferase and thiamine diphosphatase in adult rat brain subcellular fractions, Neurobiology 2: 169 – 175.PubMedGoogle Scholar
  224. Richardson, C. L., Keenan, T. W., and Morre, D. J., 1977, Ganglioside biosynthesis. Characterization of CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase in Golgi apparatus from rat liver, Biochim. Biophys. Acta 488: 88 – 96.PubMedCrossRefGoogle Scholar
  225. Robb, G. A., and Keynes, R. J., 1984, Stimulation of nodal and terminal sprouting of mouse motor nerves by gangliosides, Brain Res. 295: 368 – 371.PubMedCrossRefGoogle Scholar
  226. Rogers, T. B., and Snyder, S. H., 1981, High affinity binding of tetanus toxin to mammalian brain membranes, J. Biol. Chem. 255: 2402 – 2407.Google Scholar
  227. Roisen, F. J., Bartfeld, H., Nagele, R., and Yorke, G., 1981, Ganglioside stimulation of axonal sprouting in vitro, Science 214: 577 – 578.PubMedCrossRefGoogle Scholar
  228. Roisen, F. J., Matta, S. G., Yorke, G., and Rapport, M. M., 1986, The role of gangliosides in neurotrophic interaction in vitro, in: Gangliosides and Neuronal Plasticity ( G. Tettamanti, R. W. Ledeen, K. Sandhoff, Y. Nagai, and G. Toffano, eds.), Vol. 6, pp. 281 – 293, Liviana Press, Padova.Google Scholar
  229. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5: 270 – 297.PubMedCrossRefGoogle Scholar
  230. Rosengren, B., Mansson, J.-E., and Svennerholm, L., 1987, Composition of gangliosides and neutral glycosphingolipids of brain in classical Tay—Sachs and Sandhoff disease: More lyso-GM2 in Sandhoff disease? J. Neurochem. 49: 834 – 840.PubMedCrossRefGoogle Scholar
  231. Rösner, H., 1975, Incorporation of sialic acid into gangliosides and glycoproteins of the optic pathway following an intraocular injection of [N3H]acetylmanosamine in the chicken, Brain Res. 97: 107 – 116.PubMedCrossRefGoogle Scholar
  232. Rösner, H., and Merz, G., 1982, Uniform distribution and similar turnover rates of individual gangliosides along axons of retinal ganglion cells in the chicken, Brain Res. 236: 63 – 75.PubMedCrossRefGoogle Scholar
  233. Rösner, H., Wiegandt, H., and Rahmann, H., 1973, Sialic acid incorporation into gangliosides and glycoproteins of the fish brain, J. Neurochem. 21: 655 – 665.PubMedCrossRefGoogle Scholar
  234. Roth, S., 1985, Are glycosyltransferases the evolutionary antecedents of the immunoglobulins? Q. Rev. Biol. 60: 145 – 153.PubMedCrossRefGoogle Scholar
  235. Roth, S., and Marchase, R. B., 1976, An in vitro assay for retinotectal specificity, in: Neuronal Recognition ( S. H. Barondes, ed.), pp. 227 – 248, Plenum Press, New York.CrossRefGoogle Scholar
  236. Rybak, S., Ginzburg, I., and Yavin, E., 1983, Gangliosides stimulate neurite outgrowth and induce tubulin mRNA accumulation in neural cells, Biochem. Biophys. Res. Commun. 116: 974 – 980.PubMedCrossRefGoogle Scholar
  237. Sabel, B. A., Slavin, M. D., and Stein, D. G., 1984, GM1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage, Science 225: 340 – 342.Google Scholar
  238. Sabel, B. A., Dunbar, G. L., Butler, W. W., and Stein, D. G., 1985, GM1 ganglioside stimulates neuronal reorganization and reduces rotational asymmetry after hemitransections of the nigro-striatal pathway, Exp. Brain Res. 60: 27 – 37.PubMedCrossRefGoogle Scholar
  239. Saito, M., Saito, M., and Rosenberg, A., 1984, Action of monensin, a monovalent cationophore, on cultured human fibroblast: Evidence that it induces high cellular accumulation of glucosyl-and lactosylceramide (gluco-and lactocerebroside), Biochemistry 23: 1043 – 1046.PubMedCrossRefGoogle Scholar
  240. Sandhoff, K., and Christomanou, H., 1979, Biochemistry and genetics of gangliosidoses, Hum. Genet. 50: 107 – 143.PubMedCrossRefGoogle Scholar
  241. Sandhoff, K., and Conzelmann, E., 1984, The biochemical basis of gangliosidoses, Neuropediatrics 15: 85 – 92.PubMedCrossRefGoogle Scholar
  242. Sandhoff, K., Conzelmann, E., Neufeld, E. F., Kaback, M. M., and Suzuki, L., 1989, The GM2 gangliosidoses, in: The Metabolic Basis of Inherited Disease 6th ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), McGraw—Hill, New York, in press.Google Scholar
  243. Sbaschnig-Agler, M., Dreyfus, H., Norton, W. T., Sensenbrenner, M., Farooq, M., Byrne, M. C., and Ledeen, R. W., 1988, Gangliosides of cultured astroglia, Brain Res., 461: 98 – 106.PubMedCrossRefGoogle Scholar
  244. Schachter, H., and Roseman, S., 1980, Mammalian glycosyltransferases. Their role in the synthesis and function of complex carbohydrates and glycolipids, in: The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennarz, ed.), pp. 85–160, Plenum Press, New York.CrossRefGoogle Scholar
  245. Schauer, R., Veh, R. W., Sander, M., Corfield, A. P., and Wiegandt, H., 1980, “Neuraminidaseresistant” sialic acid residues of gangliosides, Adv. Exp. Med. Biol. 125:283–294.Google Scholar
  246. Scheel, G., Schwarzmann, G., Hoffmann-Bleihauer, P., and Sandhoff, K., 1985, The influence of ganglioside insertion into brain membranes on the rate of ganglioside degradation by membrane-bound sialidase, Eur. J. Biochem. 153: 29 – 35.PubMedCrossRefGoogle Scholar
  247. Scheideler, M. A., and Dawson, G., 1986, Direct demonstration of the activation of UDP-N-acetylgalac- tosamine:[GM3]N-acetylgalactosaminyltransferase by cyclic AMP, J. Neurochem. 46: 1639 – 1643.PubMedCrossRefGoogle Scholar
  248. Schengrund, C. L., and Rosenberg, A., 1970, Intracellular location and properties of bovine sialidase, J. Biol. Chem. 245: 6196–6200.Google Scholar
  249. Ecto-ganglioside-sialidase activity of herpes simplex virus transformed hamster embryo fibroblastGoogle Scholar
  250. Schengrund, C. L., Rosenberg, A., and Repman, M. A., 1976, Ecto-ganglioside-sialidase activity of herpes simplex virus transformed hamster embryo fibroblast, J. Cell Biol. 70: 555 – 561.PubMedCrossRefGoogle Scholar
  251. Schengrund, C. L., Repman, M. A., and Nelson, J. T., 1979, Distribution in spleen subcellular organelles of sialidase active towards natural sialoglycolipid and sialoglycoprotein substrates, Biochim. Biophys. Acta 568: 377 – 385.PubMedCrossRefGoogle Scholar
  252. Schwartz, M., and Spirman, N., 1982, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies, Proc. Natl. Acad. Sci. USA 79: 6080 – 6083.PubMedCrossRefGoogle Scholar
  253. Seifert, W., and Fink, H.-J., 1984, In-vitro and in-vivo studies on gangliosides in the developing and regenerating hippocampus of the rat, in: Ganglioside Structure, Function, and Biomedical Potential (R. W. Ledeen, R. K. Yu, M. M. Rapport, and K. Suzuki, eds.), pp. 535 – 545, Plenum Press, New York.Google Scholar
  254. Sharom, F. J., and Grant, C. W. M., 1978, A model for ganglioside behavior in cell membranes, Biochim. Biophys. Acta 507: 280 – 293.PubMedCrossRefGoogle Scholar
  255. Shur, B. D., and Bennette, D., 1978, A specific defect in galactosyltransferase regulation on sperm bearing mutant alleles of the T/t locus, Dev. Biol. 71: 243 – 259.CrossRefGoogle Scholar
  256. Sinha, A. K., and Rose, S. P. R., 1973, ß-N-acetyl D-galactosaminidase in bulk separated neurons and neurapil from rat cerebral cortex, J. Neurochem. 20: 39 – 44.PubMedCrossRefGoogle Scholar
  257. Skaper, S. D., and Varon, S., 1985, Ganglioside GMI overcomes serum inhibition of neuritic outgrowth, Int. J. Dev. Neurosci. 3: 187 – 198.CrossRefGoogle Scholar
  258. Skaper, S. D., Katoh-Semba, R., and Varon, S., 1985, GMI ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selective culture conditions, Dev. Brain Res. 23:19–26. Skaper, S. D., Facci, L., Rudge, J., Katoh-Semba, R., Manthorpe, M., and Varon, S., 1986, Mor-phological modulation of cultured rat brain astroglial cells: Antagonism by ganglioside GM1, Dey. Brain Res. 25: 21 – 31.CrossRefGoogle Scholar
  259. Skaper, S. D., Favaron, M., Facci, L., and Leon, A., 1987, Gangliosides stimulate the breakdown of polyphosphoinositides in CNS neurons in vitro, Soc. Neurosci. Abstr. 13: 11 – 19.Google Scholar
  260. Skaper, S. D., Favaron, M., Facci, L., Vantini, G., Fusco, M., Ferrari, G., and Leon, A., 1988, Ganglioside involvement in neuronotrophic interactions, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects (R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 351 –c 360.Google Scholar
  261. Sommers, L. W., and Hirschberg, C. B., 1982, Transport of sugar nucleotides into rat liver Golgi. A new Golgi marker activity, J. Biol. Chem. 257: 10811 – 10817.PubMedGoogle Scholar
  262. Sonderfeld, S., Conzelmann, E., Schwarzmann, G., Burg, J., Hinrichs, U., and Sandhoff, K., 1985, Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects, Eur. J. Biochem. 149: 247 – 255.PubMedCrossRefGoogle Scholar
  263. Sonnino, S., Ghidoni, R., Masserini, M., Aporti, F., and Tettamanti, G., 1981, Changes in rabbit brain cytosolic and membrane-bound gangliosides during prenatal life, J. Neurochem. 36: 227 – 232.PubMedCrossRefGoogle Scholar
  264. Sparrow, J. R., and Grafstein, B., 1982, Sciatic nerve regeneration in ganglioside-treated rats, Exp. Neurol. 77: 230 – 235.PubMedCrossRefGoogle Scholar
  265. Spero, D. A., and Roisen, F. J., 1984a, Ganglioside-induced neuronal surface activity, Anat. Rec. 208: 172A – 173A.Google Scholar
  266. Spero, D. A., and Roisen, F. J., 1984b, Ganglioside-mediated enhancement of the cytoskeletal organization and activity in neuro-2a neuroblastoma cells, Dev. Brain Res. 13: 37 – 48.CrossRefGoogle Scholar
  267. Spiegel, S., and Fishman, P. H., 1987, Gangliosides as bimodal regulators of cell growth, Proc., Natl. Acad. Sci. USA 84: 141–145.CrossRefGoogle Scholar
  268. Spiegel, S., Schlesinger, J., and Fishman, P. H., 1984, Incorporation of fluorescent gangliosides into human fibroblats: Mobility, fate, and interaction with fibronectin, J. Cell Biol. 99:699–704.cGoogle Scholar
  269. Spiegel, S., Yamada, K. M., Hom, B. E., Moss, J ., and Fishman, P. H., 1985, Fluorescent gangliosides as probes for the retention and organization of fibronectin by ganglioside-deficient mouse cells, J. Cell Biol. 100: 721–726.Google Scholar
  270. Spiegel, S., Yamada, K., Horn, B. E., Moss, J., and Fishman, P. H., 1986, Fibrillar organization of fibronectin is expressed coordinately with cell surface gangliosides in a variant murine fibroblast, J. Cell Biol. 102: 1898 – 1906.Google Scholar
  271. Spirman, N., Sela, B.-A., and Schwartz, M., 1982, Antiganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish retinal explants, J. Neurochem. 39: 874 – 877.PubMedCrossRefGoogle Scholar
  272. Spirman, N., Sela, B.-A., Gilter, C., Calef, E., and Schwartz, M., 1984, Regenerative capacity of the goldfish visual system is affected by antibodies specific to gangliosides injected intraocularly, J. Neuroimmunol. 6: 197 – 207.PubMedCrossRefGoogle Scholar
  273. Spoerri, P. E., 1983, Effects of gangliosides on the in vitro development of neuroblastoma cells: An ultrastructural study, Int. J. Dev. Neurosci. 1: 383–391.CrossRefGoogle Scholar
  274. Spoerri, P. E., Rapport, M. M., Mahadik, S. P., and Roisen, F. J ., 1988, Inhibition of conditioned media-mediated neuritogenesis of sensory ganglia by monoclonal antibodies to GM1 ganglioside, Dey. Brain Res. 41: 71 – 77.Google Scholar
  275. Stoffyn, A., Stoffyn, P., Farooq, M., Snyder, D. S., and Norton, W. T., 1981, Sialosyltransferase activity and specificity in the biosynthesis in vitro of sialosylgalacto-sylceramide (GM4) and sialosyllactosylceramide (GM3) by rat astrocytes, neuronal perikarya, and oligodendroglia, Neurochem. Res. 6: 1149 – 1157.PubMedCrossRefGoogle Scholar
  276. Suzuki, K., 1967, Formation and turnover of the major brain gangliosides during development, J. Neurochem. 14: 917 – 925.PubMedCrossRefGoogle Scholar
  277. Suzuki, K., 1970, Formation and turnover of myelin gangliosides, J. Neurochem. 17: 209 – 213.PubMedCrossRefGoogle Scholar
  278. Suzuki, K., 1987, Gangliosides and neuropathy, in: Gangliosides and Modulation of Neuronal Functions ( H. Rahmann, ed.), pp. 531 – 546, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  279. Suzuki, K., Tanaka, H., Yamanaka, T., and Van Damme, 0., 1980, The specificity of ß-galactosidase in the degradation of gangliosides, Adv. Exp. Med. Biol. 125: 307 –318.Google Scholar
  280. Suzuki, T., Harada, M., Suzuki, Y., and Matsumoto, M., 1984, Incorporation of sialoglycoprotein containing lacto-series oligosaccharides into chicken asialoerythrocyte membranes and restoration of receptor activity toward hemagglutinating virus of Japan (Sendai virus), J. Biochem. 95:1193–1200.Google Scholar
  281. Takeda, Y., Takeda, T., Honda, T., Sakurai, J., Ohtomo, N., and Miwatani, T., 1975, Inhibition of hemolytic activity of the thermostable direct hemolysin of Vibrio parahaemolyticus by ganglioside, Infect. Immun. 12: 931 – 933.PubMedGoogle Scholar
  282. Tanaka, K., Dora, E., Urbanics, R., Greenberg, J. H., Toffano, G., and Reivich, M., 1986, Effect of the ganglioside GM 1 on cerebral metabolism, microcirculation, recovery kinetics of ECoG and histology, during the recovery period following focal ischemia in cats, Stroke 17: 1170 – 1178.PubMedCrossRefGoogle Scholar
  283. Tettamanti, G., Morgan, I. G., Gombos, G., Vincendon, G., and Mandel, P., 1972, Sub-synaptosomal localization of brain particulate neuraminidase, Brain Res. 47: 515 – 518.PubMedCrossRefGoogle Scholar
  284. Tettamanti, G., Venerando, B., Roberti, S., Chigomo, V., Sonnino, S., Ghidoni, R., Orlando, P., and Massani, P., 1981, The fate of exogenously administered brain gangliosides, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair ( M. M. Rapport and A. Gorio, eds.), pp. 225–240, Raven Press, New York.Google Scholar
  285. Tettamanti, G., Ledeen, R. W., Sandhoff, K., Nagai, Y., and Toffano, G. (eds.), 1986, Gangliosides and Neuronal Plasticity, Vol. 6, Liviana Press, Padova.Google Scholar
  286. Toffano, G., Benvengnu, D., Bonetti, A. C., Facci, L., Leon A., Orlando, P., Ghidoni, R., and Tettamanti, G., 1980, Interactions of GM1 ganglioside with crude rat brain neuronal membranes, J. Neurochem. 35: 861 – 866.PubMedCrossRefGoogle Scholar
  287. Toffano, G., Savoini, G., Morono, F., Lombardi, G., Calza, L., and Agnati, L. F., 1983, GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system, Brain Res. 261: 163 – 166.PubMedCrossRefGoogle Scholar
  288. Tsuji, S., Arita, M., and Nagai, Y., 1983, GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines, J. Biochem. 94: 303 – 306.PubMedGoogle Scholar
  289. Tsuji, S., Nakajima, J., Sasaki, T., and Nagai, Y., 1985, Bioactive gangliosides. IV. Ganglioside GQIb/cat+ dependent protein kinase activity exists in the plasma membrane fraction of neuroblastoma cell line, GOTO, J. Biochem. 97: 969 – 972.PubMedGoogle Scholar
  290. Tsuji, S., Yamashita, T., Tanaka, M., and Nagai, Y., 1988, Synthesis of sialyl compounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (neuro 2a), J. Neurochem. 50: 414 – 423.PubMedCrossRefGoogle Scholar
  291. Usuki, S., Lyu, S.-C., and Sweeley, C. C., 1988a, Sialidase activities of cultured human fibroblasts and the metabolism of GM3 ganglioside, J. Biol. Chem., 263: 6847 – 6857.PubMedGoogle Scholar
  292. Usuki, S., Hoops, P., and Sweeley, C. C., 1988b, Growth control of human foreskin fibroblasts and inhibition of extracellular sialidase activity by 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid, J. Biol. Chem., 263: 10595 – 10599.Google Scholar
  293. Van den Eijnden, D. H., and van Dijk, W., 1974, Properties and regional distribution of cerebral CMP-N- acetylneuraminic acid: Glycoprotein sialyltransferase, Biochim. Biophys. Acta 362: 136–149.CrossRefGoogle Scholar
  294. van Heyningen, W. E., 1984, Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin, Nature 249: 415 – 417.CrossRefGoogle Scholar
  295. Varon, S., Manthorpe, M., and Williams, L R, 1984, Neuronotrophic and neurite-promoting factors and their clinical potentials, Dev. Neurosci. 6: 73 – 100.CrossRefGoogle Scholar
  296. Varon, S., Skaper, S. D., and Katoh-Semba, R., 1986, Neuritic responses to GM1 ganglioside in several in vitro systems, in: Gangliosides and Neuronal Plasticity ( G. Tettamanti, R. Ledeen, K. Sandhoff, Y. Nagai, and G. Toffano, eds.), pp. 215 – 230, Liviana Press, Padova.Google Scholar
  297. Varon, S., Pettmann, B., and Manthorpe, M., 1988, Extrinsic regulations of neuronal maintenance and repair, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects ( R. W. Ledeen, E. L. Hogan, C. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 607 – 623.Google Scholar
  298. Vaswani, K. K., and Ledeen, R. W., 1988, Gangliosides stimulate phosphoinositide breakdown in neuro-2A cells, Trans. Am. Soc. Neurochem. 19: 180.Google Scholar
  299. Vaswani, K. K., Wu, G., and Ledeen, R. W., 1989, Gangliosides stimulate calcium influx and hydrolysis of phosphoinositides in neuro-2A cells, submitted for publication.Google Scholar
  300. Verghese, J. P., Bradley, W. G., Mitsumoto, H., and Chad, D., 1982, A blind controlled trial of adrenocor- ticotropin and cerebral gangliosides in nerve regeneration in the rat, Exp. Neurol. 77: 455 – 458.CrossRefGoogle Scholar
  301. Vyskocill, F., Di Gregorio, F., and Gorio, A., 1985, The facilitating effect of gangliosides on the elec- trogenic (Na +/ pump and on the resistance of the membrane potenetial to hypoxia in neuromuscular preparation, Pfluegers Arch. 403: 1 – 6.CrossRefGoogle Scholar
  302. Walkley, S. U., Wurzelmann, S., and Purpura, D. P., 1981, Ultrastructure of neurites and meganeurites of cortical pyramidal neurons in feline gangliosidosis as revealed by the combined Golgi—EM technique, Brain Res. 211: 393 – 398.PubMedCrossRefGoogle Scholar
  303. Wiegandt, H., 1985, Gangliosides, in: Glycolipids, Vol. 10 ( A. Neuberger and L. L. M. van Deenen, eds.), pp. 199 – 260, Elsevier, Amsterdam.Google Scholar
  304. Willinger, M., and Schachner, M., 1980, GM1 ganglioside as a marker for neuronal differentiation in mouse cerebellum, Dev. Biol. 74: 101–117.PubMedCrossRefGoogle Scholar
  305. Wojcik, M., Ulas, J., and Oderfeld-Nowak, B., 1982, The stimulating effect of ganglioside injections on the recovery of choline acetyltransferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesions, Neuroscience 7: 495 – 499.PubMedCrossRefGoogle Scholar
  306. Yamada, K. H., Critchley, D. R., Fishman, P. H., and Moss, J., 1983, Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells, Exp. Cell Res. 143: 295 – 302.PubMedCrossRefGoogle Scholar
  307. Yamada, K., Abe, A., and Sasaki, T., 1985, Specificity of the glycolipid transfer protein from pig brain, J. Biol. Chem. 260: 4615 – 4621.Google Scholar
  308. Yamakawa, T., and Nagai, Y., 1978, Glycolipids at the cell surface and their biological functions, Trends Biochem. Sci. 3:128–131.CrossRefGoogle Scholar
  309. Yanagisawa, K., Taniguchi, N., and Makita, A., 1987, Purification and properties of GM2 synthase, UDPN-acetylgalactosamine: GM3 3-N-acetylgalactosaminyltransferase from rat liver, Biochim. Biophys. Acta 919: 213 – 220.PubMedCrossRefGoogle Scholar
  310. Yasuda, Y., Tiemeyer, M., Blackburn, C. C., and Schnaar, R. L., 1988, Neuronal recognition of gangliosides: Evidence for a brain ganglioside receptor, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects ( R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press, Padova, pp. 229 – 243.Google Scholar
  311. Yates, A. J., 1986, Gangliosides in the nervous system during development and regeneration, Neurochem. Pathol. 5: 309 – 329.PubMedCrossRefGoogle Scholar
  312. Yates, A. J., Tipnis, U. R., Hofteig, J. H., and Warner, J. K., 1984, Biosynthesis and transport of gangliosides in peripheral nerve, in: Ganglioside Structure, Function and Biomedical Potential (R. Ledeen, R. K. Yu, M. M. Rapport, and K. Suzuki, eds.), pp. 155–168, Plenum Press, New York.Google Scholar
  313. Yavin, E., and Yavin, Z., 1979, Ganglioside profiles during neural tissue development. Acquisition in the prenatal rat brain and cerebral cell cultures, Dev. Neurosci. 2: 25 – 37.CrossRefGoogle Scholar
  314. Yavin, E., Gil, S., Consolazione, A., dal Toso, R., and Leon, A., 1987, Selective enhancement of tubulin gene expression and increase in oligo(dT)-bound RNA in the rat brain after nigrostriatal pathway unilateral lesion and treatment with ganglioside, J. Neurosci. Res. 18: 615 – 620.PubMedCrossRefGoogle Scholar
  315. Yip, M. C. M., and Dain, J. A., 1969, The enzymic synthesis of ganglioside. 1. Brain uridine diphosphate D -galactose:N-acetyl-galactosaminyl-galactosyl-glucosyl-ceramide galactosyl transferase, Lipids 4: 270277.Google Scholar
  316. Yogeeswaran, G., Murray, R. K., Pearson, M. L., Sanwal, B. D., McMorris, F. A., and Ruddle, F. H., 1973, Glycosphingolipids of clonal lines of mouse neuroblastoma and neuroblastoma x L cell hybrids, J. Biol. Chem. 248: 1231–1239.PubMedGoogle Scholar
  317. Yohe, H. C., Jacobson, R. I., and Yu, R. K., 1983, Ganglioside—basic protein interaction: Protection of gangliosides against neuraminidase action, J. Neurosci. Res. 9: 401 – 412.PubMedCrossRefGoogle Scholar
  318. Yu, R. K., and Ando, S., 1980, Structures of some new complex gangliosides of fish brain, in: Structure and Function of Gangliosides ( L. Svennerholm, P. Mandel, H. Dreyfus, and P.-F. Urban, eds.), pp. 33–45, Plenum Press, New York.CrossRefGoogle Scholar
  319. Yusuf, H. K. M., Pohlentz, G., Schwarzmann, G., and Sandhoff, K., 1983a, Ganglioside biosynthesis in Golgi apparatus of rat liver, Eur. J. Biochem. 134: 47 – 54.PubMedCrossRefGoogle Scholar
  320. Yusuf, H. K. M., Pohlentz, G., and Sandhoff, K., 1983b, Tunicamycin inhibits ganglioside biosynthesis by blocking sugar nucleotide transport across the membrane vesicles, Proc. Natl. Acad. Sci. USA 80: 7075 – 7079.PubMedCrossRefGoogle Scholar
  321. Yusuf, H. K. M., Schwarzmann, G., Pohlentz, G., and Sandhoff, K., 1987, Oligosialogangliosides inhibit GM2- and GD3-synthesis in isolated Golgi vesicles from rat liver, Biol. Chem. Hoppe-Seyler 368: 455 – 462.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert W. Ledeen
    • 1
  1. 1.Departments of Neurology and BiochemistryAlbert Einstein College of MedicineBronxUSA

Personalised recommendations