Skip to main content

Siegel’s Theorem

  • Chapter
  • 5229 Accesses

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 74))

Abstract

Siegel’s theorem,1 in the first of its two forms, states that: For any ε > 0 there exists a positive number C 1(ε) such that, if χ is a real primitive character to the modulus q, then

$$ L(1,\chi)>{C_1}(\varepsilon){q^{- \varepsilon}} $$
(1)

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acta Arithmetica, 1, 83–86 (1935).

    Google Scholar 

  2. See Landau, Göttinger Nachrichten, 1918, 285–295. The same argument allows one to deduce the first form of Siegel’s theorem from the second.

    Google Scholar 

  3. Math. Zeitschrift, 37, 405–415 (1933).

    Google Scholar 

  4. J. London Math. Soc., 9, 289–298 (1934).

    Google Scholar 

  5. Quarterly J. of Math., 5, 150–160 (1934).

    Google Scholar 

  6. Quarterly J. of Math., 5, 293–301 (1934).

    Google Scholar 

  7. Mathematika, 13, 204–216 (1966). See also Chapter 5 of Baker, Transcendental Number Theory, Cambridge University Press, 1975.

    Google Scholar 

  8. Michigan Math. J., 14, 1–27 (1967).

    Google Scholar 

  9. Math. Z., 56, 227–252 (1952).

    Google Scholar 

  10. Invent. Math., 5, 169–179 (1968).

    Google Scholar 

  11. J. Number Theory, 1, 16–27 (1969); Modular Functions of One Variable I, Springer-Verlag, Berlin, 1973, pp. 153–174.

    Google Scholar 

  12. Ann. Math., 94, 139–152, 153–173 (1971).

    Google Scholar 

  13. J. London Math. Soc., 23, 275–279 (1948). Other simple proofs have been given by Chowla, Annals of Math. (2) 51, 120–122 (1950) and by Goldfeld, Proc. Nat. Acad. Sci. U.S.A., 71, 1055 (1974).

    Google Scholar 

  14. Quarterly J. of Math., 9, 194–195 (1938).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Ann Davenport

About this chapter

Cite this chapter

Davenport, H. (1980). Siegel’s Theorem. In: Multiplicative Number Theory. Graduate Texts in Mathematics, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5927-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5927-3_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5929-7

  • Online ISBN: 978-1-4757-5927-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics