Skip to main content

The Mechanism of Apoptosis Regulation by IAP Antagonist Smac/DIABLO

  • Chapter
Molecular Mechanisms of Programmed Cell Death
  • 158 Accesses

Abstract

Caspases are central components of the machinery responsible for cell apoptosis. The inhibitor of apoptosis proteins (IAPs) could efficiently block the caspases activation. Recently, a novel cell death regulator Smac/DIABLO (second mitochondria derived activator of caspases/Direct IAP Binding protein with low PI) was identified. Smac/DIABLO performs a critical function in apoptosis by eliminating the inhibition of IAPs. This article will firstly review the role of caspases and IAPs in apoptosis and then focus on the mechanism of apoptosis regulation by IAP antagonist Smac. We will discuss what is currently known about Smac/DIABLO such as the structure and function of Smac/DIABLO in apoptosis; its relation with Bd-2 family proteins as well as its potenial application in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.M., and Cory, S. (1998). The Bc1–2 protein family: arbitries of cell survival. Science 281: 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  • Adida, C., Berrebi, D., Peuchmaur, M., Reyes-Mugica, M., and Altieri, D.C. (1998). Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351 (9106): 882–883.

    Article  PubMed  CAS  Google Scholar 

  • Adrain, C., Creagh, E.M., and Martin, S.J. (2001). Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bc1–2. EMBO J; 20 (23): 6627–36.

    Article  PubMed  CAS  Google Scholar 

  • Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W., and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, p. 171.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini, G., Adida, C., and Altieri, D. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 3: 917–921.

    Article  PubMed  CAS  Google Scholar 

  • Antonsson, B., Montessuit, S., Lauper, S., Eskes, R., and Martinou, J.C. (2000). Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., and Wallach, D. (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1– and TNF receptor-induced cell death. Cell 14; 85 (6): 803–15.

    Google Scholar 

  • Borden, K.L., and Freemont, P.S. (1996). The RING finger domain: a recent example of a sequence-structure family. Curr. Opin. Struct. Biol. 6 (3): 395–401.

    Article  PubMed  CAS  Google Scholar 

  • Borden, K.L. (2000). RING domains: master builders of molecular scaffolds ? J. Mol. Biol. 295: 1103–12.

    Article  PubMed  CAS  Google Scholar 

  • Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. (1999). Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15: 269–290.

    Article  PubMed  CAS  Google Scholar 

  • Cardone, M.H., Roy, N., Stennicke, H.R., Salvesen, G.S., Franke, T.F., Stanbridge, E., Frisch, S., and Reed, J.C. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 13; 282 (5392): 1318–21.

    Google Scholar 

  • Chai, J., Du, C., Wu, J.W., Kyin, S., Wang, X., and Shi, Y. (2000). Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 24; 406(6798): 855–62.

    Google Scholar 

  • Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Datta, P., Alnemri, E.S., Shi, Y., and Dataa, P. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell 104 (5): 769–80.

    Article  PubMed  CAS  Google Scholar 

  • Chaohong Sun, Mengli Cai, Robert, P., Meadows, Nan Xu, Angelo, H., Gunasekera, Julia Herrmann, Joe C. Wu, and Stephen W. Fesik (2000). NMR Structure and Mutagenesis of the Third Bir Domain of the Inhibitor of Apoptosis Protein XIAP J. Biol. Chem. 275: 33777–33781.

    Article  PubMed  CAS  Google Scholar 

  • Crook, N.E., Clem, R.J., and Miller, L.K. (1993). An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67: 2168–74.

    PubMed  CAS  Google Scholar 

  • Deng, Y., Lin, Y., and Wu, X. (2002). TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes. Dev. 16 (1): 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux, Q.L., Leo, E., Stennicke, H.R., Welsh, K., Salvesen, G.S., and Reed, J.C. (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18: 5242–51.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux, Q.L., N. Roy, H.R. Stennicke, T. Van Arsdale, Q. Zhou, M. Srinivasula, E.S. Alnemri, G.S. Salvesen, and J.C. Reed. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17: 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux, Q.L., R. Takahashi, G.S. Salvesen, and J.C. Reed. (1997). X-linked IAP is a direct inhibitor of cell death proteases. Nature 388: 300–303.

    Article  PubMed  CAS  Google Scholar 

  • Du, C., M. Fang, Y. Li, L. Li, and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw, W.C., Martins, L.M., and Kaufmann, S.H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383–424.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.E., J.Y. Yuan, and H.R. Horvitz. (1991). Mechanisms and functions of cell death. Annu. Rev. Cell. Biol. 7: 663–698.

    Article  PubMed  CAS  Google Scholar 

  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes-Alnemri, T., Armstrong, R.C., Krebs, J., Srinivasula, S.M., Wang, L., Bullrich, F., Fritz, L.C., Trapani, J.A., Tomaselli, K.J., Litwack, G., and Alnemri, E.S. (1996). In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA. 93 (15): 7464–9.

    Article  PubMed  CAS  Google Scholar 

  • Fesik, S.W., and Shi, Y. (2001). Controlling caspases. Science 294: 1477–1478.

    Article  PubMed  CAS  Google Scholar 

  • Fulda, S., Wick, W., Weller, M., and Debatin, K.M. (2002). Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med. 8 (8): 808–15.

    PubMed  CAS  Google Scholar 

  • Goya!, L., K. McCall, J. Agapite, E. Hartwieg, and Steller, H. (2000). Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19: 589–597.

    Article  Google Scholar 

  • Hegde, R., Srinivasula, S.M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A.S., Fernandes-Alnemri, T., and Alnemri, E.S. (2002). Identification of Omi/HtrA2 as a mitochondria) apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277 (1): 432–8.

    Article  PubMed  CAS  Google Scholar 

  • Holcik, M., Gibson, H., and Korneluk, R.G. (200I). XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 6(4): 253–61. Review.

    Google Scholar 

  • Hsu, Y.T., Wolter, K.G., and Youle, R.J. (1997). Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc. Natl. Acad. Sci. USA 94: 3668–3672.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Park, Y.C., Rich, R.L., Segal, D., Myszka, D.G., and Wu, H. (2001). Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104 (5): 781–90.

    PubMed  CAS  Google Scholar 

  • Kawasaki, H., Altieri, D.C., Lu, C.D., Toyoda, M., Tenjo, T., and Tanigawa, N. (1998). Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res. 58 (22): 5071–4.

    PubMed  CAS  Google Scholar 

  • Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski. D.J., and Williams, L.T. (1997). Caspase-3–generated fragment of gelsolin: effector of morphological chuge in apoptosis. Science 278: 294–298.

    CAS  Google Scholar 

  • Lee, N., MacDonald, H., Reinhard, C., Halenbeck, R., Roulston, A., Shi, T., and Williams, L.T. (1997). Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc. Natl. Acad. Sci. USA 94, 13642–13647.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., and Altieri, D.C. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–584.

    Article  PubMed  CAS  Google Scholar 

  • Li, P., D. Nijhawan, I. Budihardjo, S. Srinivasula, M. Ahmad, E. Alnemri, and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 81: 479–489.

    Article  Google Scholar 

  • Liston, P., N. Roy, K. Tamai, C. Lefebvre, S. Baird, G. Cherton-Horvat, R. Farahani, M. McLean, J. Ikeda, A. MacKenzie, and R.G. Komeluk. (1996). Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379: 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W.T., and Wang, X. (1998). The 40–kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. USA 95: 8461–8466.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Sun, C., Olejniczak, E.T., Meadows, R.P., Betz, S.F., Oost, T. Herrmann, J., Wu, J.C., and Fesik, S.W. (2000). Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408 (6815): 1004–8.

    CAS  Google Scholar 

  • Lu, C.D., Altieri, D.C., and Tanigawa, N. (1998). Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res. 58 (9): 1808–12.

    PubMed  CAS  Google Scholar 

  • Matthias, E., Baohua, H., Zehan, C., Robert P. Meadows, Shi-Chung Ng, Lixin Zheng, Michael J. Lenardo, and Stephen W. Fesik (1998). NMR structure and mutagenesis of the FADD (Morti) death-effector domain: Nature 392: 941–945.

    Google Scholar 

  • MacKenzie, A., and Casse, E.L. (2000). Inhibition of IAP’s protection by Diablo/Smac: new therapeutic opportunities? Cell Death and Differentiation 7: 866–867.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.J., Reutelingsperger, C.P., McGahon, A.J., Rader, J.A., van Schie, R.C., LaFace, D.M., and Green, D.R. (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556.

    Article  PubMed  CAS  Google Scholar 

  • Martins, L.M., Iaccarino, I., Tenev, T., Gschmeissner, S., Totty, N.F., Lemoine, N.R., Savopoulos, J., Gray, C.W., Creasy, C.L., Dingwall, C., Downward, J. (2002). The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 277 (1): 439–44.

    Article  PubMed  CAS  Google Scholar 

  • Millet, A., Bettaieb, A., Renaud, F., Prevotat, L., Hammann, A., Solary, E., Mignotte, B., and Jeannin, J.F. (2002). Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123 (1): 235–46.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, K.M., Ranganathan, V., Farnsworth, M.L., Kavallaris, M., and Lock, R.B. (2000). BcI-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell. Death. Differ. 7: 102–111.

    Article  PubMed  CAS  Google Scholar 

  • Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvesen, G.S., and Dixit, V.M. (1998). An induced proximity model for caspase-8 activation. J. Biol. Chem. 273: 2926–2930.

    Article  PubMed  CAS  Google Scholar 

  • N.D. Rawlings, in: A.J. Barrett, N.D. Rawlings, and J.F. Woessner (1998). Handbook of Proteolytic Enzymes, (Academic Press, San Diego, CA ), Chapter 247.

    Google Scholar 

  • Nomura, M., Shimizu, S., Ito, T., Narita, M., Matsuda, H., and Tsujimoto, Y. (1999). Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bc1–2. Cancer Res. 59: 5542–5548.

    PubMed  CAS  Google Scholar 

  • Okada, H., Suh, W.K., Jin, J., Woo, M., Du, C., Elia, A., Duncan, G.S., Wakeham, A., Itie, A., Lowe, S.W., Wang, X., and Mak, T.W. (2002). Generation and characterization of Smac/DIABLO-deficient mice. Mol. Cell. Biol. 22 (10): 3509–3517.

    Article  PubMed  CAS  Google Scholar 

  • Peter, M.E., and Krammer, P.H. (1998). Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr. Opin. Immunol. 10 (5): 545–51.

    Article  PubMed  CAS  Google Scholar 

  • Qin, H., Srinivasula, S.M., Wu, G., Fernandes-Alnemri, T., Alnemri, E.S., and Shi, Y. (1999). Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399 (6736): 549–57.

    Article  PubMed  CAS  Google Scholar 

  • Riedl, S.J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S.W., Liddington, R.C., and Salvesen

    Google Scholar 

  • G.S. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell 104 (5): 791–800.

    Article  Google Scholar 

  • Rodriguez, J., and Lazebnik, Y. (1999). Caspase-9 and Apaf-1 form an active holoenzyme. Genes. Dev. 13: 3179–3184.

    Article  PubMed  CAS  Google Scholar 

  • Roy, N., Mahadevan, M.S., McLean, M., Shutler, G., Yaraghi, R., Farahani, S., Baird, A., Besner-Johnson, Lefebvre, C., Kang, X., Salih, M., Aubry, H., Tamai, K., Guan, X., Ioannou, P., Crawford, T.O., Jong, P.J., Surh, L., Ikeda, J.E., Korneluk, R.G., and MacKenzie, A. (1995). The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Rudel, T., and Bokoch, G.M. (1997). Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, pp. 1571–1574.

    Article  PubMed  CAS  Google Scholar 

  • Saleh, A., Srinivasula, S.M., Acharya, S., Fishel, R., and Alnemri. E.S. (1999). Cytochrome c and dATPmediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274: 17941–17945.

    Article  PubMed  CAS  Google Scholar 

  • Salvesen, G.S., and Dixit, V.M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91: 443–446. Schuler, M., and Green, D.R. Mechanisms of p53–dependent apoptosis. Biochem. Soc. Trans. 2001 Nov; 29 (Pt 6): 684–8.

    Google Scholar 

  • Shimizu, S., narita, M., and Tsujimoto, Y. (1999). Bel-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483–487.

    Article  PubMed  CAS  Google Scholar 

  • Sprick, M.R., Rieser, E., Stahl, H., Grosse, W.A., Weigand. M.A., and Walczak, H. (2002). Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 21 (17): 4520–30.

    CAS  Google Scholar 

  • Srinivasula, S.M., Datta, P., Fan, X.J., Fernandes, A.T., Huang, Z., and Alnemri, E.S. (2000). Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem. 275 (46): 36152–7.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula, S.M., Hegde, R., Saleh, A., Datta, P., Shiozaki, E., Chai, J., Lee, R.A., Robbins, P.D., Fernandes, A.T., Shi, Y., and Alnemri (2001). ESA conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410 (6824): 112–6.

    Article  PubMed  CAS  Google Scholar 

  • Stennicke, H.R., Deveraux, Q.L., Humke, E.W., Reed, J.C., Dixit, V.M., and Salvesen, G.S. (1999). Caspase-9 can be activated without proteolytic processing. J. Biol. Chem. 274: 8359–8362.

    Article  PubMed  CAS  Google Scholar 

  • Stennicke, H.R., Jurgensmeier, J.M., Shin, H., Deveraux, Q., Wolf, B.B., Yang, X., Zhou, Q., Ellerby, H.M., Ellerby, L.M., Bredesen, D., Green, D.R., Reed, J.C., Froelich, C.J., and Salvesen, G.S. (1998). Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273 (42): 27084–90.

    Article  PubMed  CAS  Google Scholar 

  • Stennicke, H.R., Jurgensmeier, J.M., Shin, Q.H., Deveraux, B.B., Wolf, X., Yang, Q., Zhou, H.M., Ellerby, L.M., Ellerby, D., Bredesen, D.R., Green, J.C., Reed, C.J., Froelich, G.S. and Salvesen (1998). Pro-caspase-3 Is a Major Physiologic Target of Caspase-8. J. Biol. Chem. 273 27084–27090.

    Article  PubMed  CAS  Google Scholar 

  • Sun, C., Cai, M., Gunasekera, A.H., et al. (1999). NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401: 818–22.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X.M., Bratton, S.B., Butterworth, M., MacFarlane, M., and Cohen, G.M. (2002). Bel-2 and Bcl-xL inhibit CD95–mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J. Biol. Chem. 277 (13): 11345–51.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, R., Deveraux, Q., Tamm, 1. et al. (1998). A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273: 7787–90.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry, N.A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281: 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T., and Nicholson, D.W. (1997). A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. B.ol. Chem. 272, 17907–17911.

    Article  CAS  Google Scholar 

  • Tikoo, A., O’Reilly, L., Day, C.L., Verhagen, A.M., Pakusch, M., and Vaux, D.L. (2002). Tissue distribution of Diablo/Smac revealed by monoclonal antibodies. Cell Death Differ 9 (7): 710–6.

    Article  PubMed  CAS  Google Scholar 

  • Vanags, D.M., Porn-Ares, Md., Coppola, S., Burgess, D.H., and Orrenius, S., (1996). Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J. Biol. Chem. 271, pp. 31075–31085.

    Article  PubMed  CAS  Google Scholar 

  • Verhagen, A.M., Coulson, E.J., and Vaux, D.L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome. Biol. 2: 3009.

    Article  Google Scholar 

  • Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E., Moritz, R.L., Simpson, R.J., and Vaux, D.L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Verhagen, A.M., and Vaux, D.L. (2002). Cell death regulation by the mammalian IAP antagonist Diablo/Smac Apoptosis 7: 163–166.

    CAS  Google Scholar 

  • Vincenz, C., and Dixit, V.M. (1997). Fas-associated death domain protein interleukin-lbeta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95– and p55–mediated death signaling. J. Biol. Chem. 272 (10): 6578–83.

    Article  PubMed  CAS  Google Scholar 

  • Wolter, K.G., Hsu, Y.T., Smith, C.L., Nechushtan, A., Xi, X.G., and Youle, R.J. (1997). Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell. Biol. 139: 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., Chai, J., Suber, T.L., Wu, J.W., Du, C., Wang, X., and Shi, Y. (2000). Structural basis of IAP recognition by Smac/DIABLO. Nature 408 (6815): 1008–12.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Chang, H.Y., and Baltimore, D. (1998). Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281: 1355–1357.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Yu, J., Park, B.H., Kinzler, K.W., and Vogelstein, B. (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290: 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.D., Zhang, X.Y., Gray, C.P., Nguyen, T., and Hersey, P. (2001). Tumor necrosis factor-related apoptosisinducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res. 61 (19): 7339–48.

    PubMed  CAS  Google Scholar 

  • Zou, H., Li, Y., Liu, X., and Wang, X. (1999). An APAF-1–cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274: 11549–11556.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jin, J., Dai, J., Zhao, J., Guo, Y. (2003). The Mechanism of Apoptosis Regulation by IAP Antagonist Smac/DIABLO. In: Shi, Y., Cidlowski, J.A., Scott, D., Wu, JR., Shi, YB. (eds) Molecular Mechanisms of Programmed Cell Death. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5890-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5890-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3404-8

  • Online ISBN: 978-1-4757-5890-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics