Regulation of the Glial Fibrillary Acidic Protein (GFAP) and of its Encoding mRNA in the Developing Brain and in Cultured Astrocytes

  • M. Tardy
  • C. Fages
  • G. Le Prince
  • B. Rolland
  • J. Nunez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)


The Glial Fibrillary Acidic Proctein (GFAP) is the monomer of a well characterized type of intermediary filaments, the fliofilaments, structurally identified as 10nm in diameter and which are essential components of the cytoskeletal architecture of the astrocyte (see Eng 1980 for a review). The expression of GFAP has been found to be highly specific of this cell type (Eng et al. 1971; Bignami et al. 1972; Uyeda et al. 1972; Gilden et al.1976: Ludwin et al. 1976; Ludwin et al. 1976; Lach and Weinmander 1978) and may therefore be used as an exclusive marker of astroglial cells.


Glial Fibrillary Acidic Proctein Astroglial Cell Intermediate Filament Protein Mature Astrocyte Glia Maturation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaducci, L., Forno, K.I., and Eng, L.F., 1981, Glial fibrillary acidic protein in cryogenic lesions of the rat brain, Neurosci. Lett., 21: 27–32.Google Scholar
  2. Bignami, A., and Dahl, D., 1976, The astroglial response to stabbingimmunofluorescence studies with antibodies to astrocyte specific protein ( GFAP) in mammalian and submalian vertebrates, Neuropath. Appl. Neurobiol., 2: 99–110.Google Scholar
  3. Bigbee, J.W., Signer, D.D., Pegram, C., Eng, L.F., 1983, Study of glial fibrillary acidic protein in a human glioma cell line grown in culture and as solid tumor, J. Neurochem., 40: 460–467.CrossRefGoogle Scholar
  4. Higbee, J.W., and Eng, L.F., 1982, Analysis and comparison of in vitro synthesized glial fibrillary acidic protein with rat CNS intermediary filament proteins, J. Neurochem., 38: 130–134.CrossRefGoogle Scholar
  5. Bignami, A., Eng, L.F., Dahl, D., and Uyeda, C.T., 1972, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res., 43: 429–435.CrossRefGoogle Scholar
  6. Bond, J.F., and Farmer, S.R., 1983, Regulation of tubulin and actin mRNA production in rat brain: expression of a new beta-tubulin mRNA with development, Mol. Cell. Biol., 3: 1333–1342.Google Scholar
  7. Bridoux, A.M., Fages, C., Couchie, D., Nunez, J., and Tardy, M. 1986, Protein synthesis in astrocytes: spontaneous and cyclic AMP-induced differentiation, Dev. Neurosci., 8: 31–43.Google Scholar
  8. Browning, E.T., and Ruina, M., 1984, Glial fibrillary acidic protein: norepinephrine stimulated phosphorylation in intact C6 glioma cells, J. Neurochem., 42: 718–726.CrossRefGoogle Scholar
  9. Chiu, F.C.. and Goldman, J.E., 1984, Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J. Neurochem., 42: 166–174.CrossRefGoogle Scholar
  10. Chiu, F.C., Norton, W.T., and Fields, K.L., 1981, The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein and fibroblast-type filament protein in vimentin, J. Neurochem.. 37: 147–155.CrossRefGoogle Scholar
  11. Cleveland, D.W., 1986, Molecular mechanisms controlling tubulin synthesis, in: Cell and Molecular Biology of the Cytoskeleton (Shay, J.W., ed,) 203–227, Plenum Publishing Corp. N.Y.CrossRefGoogle Scholar
  12. Couchie, D., Charriere-Bertrand, C., and Nunez, J., 1988, Expression of the mRNA for TAU proteins during brain development and in cultured neurons, J. Neurochem., 50: 1894–1899.CrossRefGoogle Scholar
  13. Dahl, D., 1981, The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination, J. Neurosci. Res., 6: 741–748.Google Scholar
  14. Dahl, D., Rueger, D.C., Bignami, A., Weber, K. and Osborn,:,, 1981, vimentin, the 57,000 molecular weight protein of fibroblast filaments in the major cyhtoskeletal component in immature glia, Eur. J. Cell. Biol., 24: 191–196.Google Scholar
  15. Dahl, D., and Bignami, A., 1979, Astroglial and axonal proteins in isolated brain filaments, Isolation of glial fibrillary acidic protein and of an immunologically active cyanogen bromide peptide from brain filament preparations of bovine white matter, Biochem. Biophys. Acta. 578: 305–316.Google Scholar
  16. De Armond, S.J., Fajardo, M., Naughton, S.A., and Eng, L.F., 1983, Degradation of glial fibrillary acidic protein by a calcium dependent-proteinase; an electroblot study, Brain Res., 262: 275282.Google Scholar
  17. De Armond, S.J., Lee Yuen-Luig, Kretzchmar, H.A., and Eng, L.F., 1986, Turnover of glial filaments in mouse spinal cord„ J. Neurochem., 47: 1749–1753.CrossRefGoogle Scholar
  18. Duffy, P.E., Huang, Y.Y., Rapport, M.M., and Graf, L., 1980, Glial fibrillary acidic protein in giant cell tumors of brain and other gliomas, Acta Neuropathol., 52: 51–57.CrossRefGoogle Scholar
  19. Duffy, P.E., 1983, Astrocytes: Normal, reactive and neoplastic, Raven Press (New York).Google Scholar
  20. Eng, L.F., 1980, The glial fibrillary acidic (GFA) protein, In: Proteins of the nervous system, second ed. Ed. R.A. Bradshaw, D.M.’ Schneider, p. 85–117, Raven Press, N.Y.Google Scholar
  21. Eng, L.F., Vauderhaegen, J.J., Bignami, A., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocytes, Brain Res., 28: 351–354.CrossRefGoogle Scholar
  22. Eng, L.F., and De Armond, S.J., 1983, Immunochemistry of the glial fibrillary acidic protein, Progress in Neuropath, V;5 Ed, Zimmerman, H.M. Ed. p,19–39, Raven Press, N.Y.Google Scholar
  23. Geisler, N., and Weber, K., 1982, The aminoacid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J., 2: 1649–1656.Google Scholar
  24. Geisler, N., Kaufmann, E., and Weber, K., 1982a, Protein chemical characterization of three structurally distinct domains along the protofilament unit of desmin lOnm filaments, Cell, 30: 277286.Google Scholar
  25. Geisler, N., Plessmann, U., and Weber, K., 1982b, Related amino acid sequences in neurofilaments and non-neuronal intermediate filaments, Nature, 296: 448–450.CrossRefGoogle Scholar
  26. Gilden, D.H., Wroblewska, Z., Eng, L.F., and Rorke, L.B., 1976, Human brain in tissue culture, J. Neurol. Sci. 29: 177–184.Google Scholar
  27. Goetschy, J.F., Ulrich, G., Aunis, D., and Cireselski-Treska, I., 1986, The organization and soluility properties of intermediate filaments and microtubules of cortical astrocytes in culture, J. Neurocytol., 15: 375–387.CrossRefGoogle Scholar
  28. Goldman, J.E., and Chiu, F.C., 1984, Dibutyryl cyclic AMP causes intermediate filament accumulation and actin reorganization in astrocytes, Brain Res„ 306: 85–95.CrossRefGoogle Scholar
  29. Goldman, J.E., Schaumburg, H.H., and Norton, W.T., 1978, Isolation and characterization of glial filaments from human brain, J. Cell. Biol., 78: 426–440.Google Scholar
  30. Goldmuntz, E.A., Brosman, C.F., Chiu, F.C., and Norton, W.T., 1986, Astrocyte reactivity and intermediate filament metabolism in experimental autoimmune encephalomyelities: the effect of suppression with prazosine, Brain Res., 379: 16–26.CrossRefGoogle Scholar
  31. Graeber, M.B., and Kreutzberg, G.W., 1986, Astrocytes incrase in glial fibrilary acidic protein during retrograde changes of facial motor neurons, J. Neurocytol., 15: 363–373.CrossRefGoogle Scholar
  32. Herpers, M.J.H.M., Ramaehers, F.C.S., Aldewareldt, F., Moesher, O., and Slooff, J., 1986, Coexpression of glial fibrillary acidic protein and vimentin-type intermediate filaments in human astrocytomas, Acta Neuropathol., 70: 333–339.CrossRefGoogle Scholar
  33. Honegger. P., 1986, Protein kinase C–activating tumor promoters enhance the differentiation of astrocytes in aggregating fetal brain cell cultures, J. Neuroch., 46: 1561–1566.CrossRefGoogle Scholar
  34. Hong, B.S., and Davison, P.F., 1981, Isolation and characterization of a soluble, immunoreactive peptide of glial fibrillary acidic protein, Biochim. Biophys, Acta. 670: 139–145.Google Scholar
  35. Kalnins, V.I., Subrahmanyan, L., and Fedoroff, S., 1985, Assembly of glial intermediate filament protein is initiated in the centriolar region, Brain Res., 345: 322–326.CrossRefGoogle Scholar
  36. Lach, B., and Weimander, H., 1978, Glia specific antigen in the intracranical tumors, Immunofluorescence study, Acta Neurograth. (Berl) 4 (1) 9–15.Google Scholar
  37. Lewis, S.A., Balcarek, J.M., Krek, V., Shelanski, M., and Cowan, N.J., 1984, Sequence of a cDNA clone-encoding mouse glial fibrillary acidic protein: structural conservation of intermediate filaments, Proc. Natl. Acad. Sci., USA, 81: 2743–2746.Google Scholar
  38. Liem, R.K.H., and Shelanski, M.L., 1978, Identity of the major protein in “native” glial fibrillary, Brain Res., 145: 196–201.CrossRefGoogle Scholar
  39. Liem, R„ 1982, Simultaneous separation and purification of neurofilament and glial filament proteins from brain, J. Neurochem., 38: 142–150.CrossRefGoogle Scholar
  40. Lucas, C.V., Bensch, K.G., and Eng, L.F., 1980, In vitro polymerization of glial fibrillary acidic protein (GFA) extracted from multiple sclerosis ( MS) brain,, Neurochem. Res,, 5: 247–255.Google Scholar
  41. Ludwin, S.K., Kosek, J.C., and Eng, L.F., 1976, The topographical distribution of S-100 and GFA proteins in the adult rat brain: An immunohistochemical study using horseradish peroxidaselabeled antibodies, J. Comp, Neurol., 165: 197–208.Google Scholar
  42. Mc Carthy, K.D., Prime, J., Harmon, T., and Pollenz, R.S., 1985, Receptor mediated phosphorylation of astroglial intermediate filament proteins in culture, J. Neurochem., 44: 723–730.CrossRefGoogle Scholar
  43. Malloch, G.D.A., Clark, J.B., and Burnet, F.R., 1987, Glial fibrillary acidic protein in the cytoskeletal and soluble protein fractions of the developing rat brain, J. Neurochem., 48: 299–306.CrossRefGoogle Scholar
  44. Morrison, R.S., De Vellis, J., Lee, Y.L., Bradshaw, R.A., and Eng, L.F., 1985, Hormone and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes, J. Neurosci. Res., 14: 167–176.Google Scholar
  45. Newcombe, J., Woodroofe, M.N., and Cuzner, M.L., 1986, Distribution of glial fibrillary acidic protein in gliosed white matter, J. Neurochem., 47: 1713–1719.CrossRefGoogle Scholar
  46. Osborn, M., Caselitz, J., and Weber, K., 1981, Heterogeneity of intermediate filament expression in vascular smooth muscle: A gradient in desmin positive cells from the rat aortic arch to the level of the arteria iliaca communes, Differentiation. 20: 196–202.Google Scholar
  47. Paetau, A., Virtanen, F., Steinman, S., Kurki, P., Linder, E., Vaheri, A., Westermark, B., Dahl, D., and Haltia, M., 1979, Glial fibrillary acidic protein and intermediate filaments in human glioma cells, Acta Neuropathol., 47: 71–74.CrossRefGoogle Scholar
  48. Pettmann, B., Weibel, M., Sensenbrenner, M., and Labourdette, G., 1985, Purification of two astroglial growth factors from bovine brain, FEBS Lett., 189: 102–108.CrossRefGoogle Scholar
  49. Pollenz, R.S., and Mc Carthy, K.D., 1986, Analysis of cyclic AMP-dependent changes in intermediate filaments protein phosphorylation and cell morphology in cultured astroglia, J. of Neurochem., 47: 9–17.CrossRefGoogle Scholar
  50. Quinlan, R.A., and Franke, W.W., 1983, Molecular interactions in intermediate sized filaments revealed by chemical cross-linking heteropolymers of vimentin and glial filament protein in cultured human glioma cells, Eur. J. Biochem., 132: 477–484.Google Scholar
  51. Rataboul, P., Faucon-Biguet, N., Vernier, P., De Vitry, F., Boularaud, S., Privat, A., and Mallet, J., 1988 ) Identification of a human GFAP-cDNA, a tool for the molecular analysis of reactive glyosis in the mammalian CNS, J. Neurosc. Res., 20: 165–175.Google Scholar
  52. Schechter, R., Yen, S.H.C., and Terry, R.D., 1981, Fibrous astrocytes in senile dementia of the Alzheimer’s type, J. Neuropath. Exp. Neuro., 40: 95–101.Google Scholar
  53. Schlaepfer, W.W., and Zimmerman, U.J.P., 1981, Calcium mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord, Neurochem. Res., 6:243–255Google Scholar
  54. Schnitzer, J., Franke, W.N., and Schachner, M., 1981, Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system, J. Cell. Biol., 90: 435–447.Google Scholar
  55. Selkoe, D.J., Ihara, Y., and Salazar, F., Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea, Science, 215: 1243–1245.Google Scholar
  56. Sensenbrenner, M„ Devilliers, G., Bock, K., aaaand Porte, A., 1980, Biochemical and ultrastructural studies of cultured rat astroglial cells, Effect of brain extract and dibutyryl AMP on glial fibrillary acidic protein and glial filament, Differentiation, 17: 51–61.Google Scholar
  57. Sharp, G; Osborn, M., and Weber, K., 1982, Occurence of two different intermediate filament proteins in the same filament in situ within a human glioma cell line, Exp. Cell. Res., 141: 385–395.Google Scholar
  58. Smith, M.E., Perret, V., and Eng, L.F., 1984, Metabolic studies in vitro in the CNS cytoskeletal proteins: synthesis and degradation, Neurochem. Res.. 9, 1493–1507.Google Scholar
  59. Sotelo, J., Toh, B.H., Lolait, S.J., Yildiz, A., Sung, D. and Holobrow, E.J., 1980, Cytoplasmic intermediate filaments in cultured glial cells, Neuropath. Appl. Neurobiol., 6: 291–298.Google Scholar
  60. Tardy, M., Fages, C., Riol, H., Le Prince, G., Rataboul, P., Charriere-Bertrand, C. and Nunez, J., 1989, Developmental expression of the GFAP-mRNA in the central nervous system and in cultured astrocytes, J. Neurochem. 52, 1, 162–167.CrossRefGoogle Scholar
  61. Uyeda, C.T., Eng, L.F., and Bignami, A., 1972, Immunological study of the glial fibrillary acidic protein, Brain Res., 37: 81–89.CrossRefGoogle Scholar
  62. Virtanen, I., Lehto, V.P., Lehronen, E., Vartio, T., Stenman, S., Kurki, P., Wayer, O., Small, J.V., Dahl, D., and Badley, R.A., 1981, Expression of intermediate filaments in cultured cells, J. Cell. Sci., 50: 45–63.Google Scholar
  63. Wang, E., Cairncross, J.G., and Liem, R.K.H., 1984, Identification of glial filament protein and vimentin in the same intermediate filament system in human glioma cells, Proc. Natl. Acad. Sci., 81: 2102–2106.Google Scholar
  64. Weibel, M., Fages, C., Belakebi, M., Tardy, M., and Nunez, J., 1987, Astroglial growth factor 2 (AGF2) increases alpha-tubulin in astroglial cells cultured in a defined medium, Neurochem. Inter,., 11: 223–228.Google Scholar
  65. Weibel, M., Pettmann, B., Labourdette, G., Miche, M., Bock, E., and Sensenbrenner, M., 1985, Morphological and biochemical maturation ofrat astroglial cells grown in a chemically defined medium: influence of an astroglial growth factor, Int. J. Dey. Neurosci., 3: 617–630.Google Scholar
  66. Yen, S.H., and Fields, K., 1981, Antibodies to neurofilaments, glial filaments and fibroblast intermediate filament-proteins bind to different cell types of the nervous systesm, J. Cell. Biol., 88: 115–126.Google Scholar
  67. Yen, T.J., Machlin, P.S., and Cleveland, D.W., 1988, Autoregulated instability of beta-tubulin mRNAS by recognition of the nascent amino terminus of beta-tubulin, Nature, 334: 580–585.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • M. Tardy
    • 1
  • C. Fages
    • 1
  • G. Le Prince
    • 1
  • B. Rolland
    • 1
  • J. Nunez
    • 1
  1. 1.INSERM U-282 Hôpital Henri MondorCréteilFrance

Personalised recommendations