Advertisement

Tau Protein: Its Presence and Metabolism in Human Neuroblastoma Cells

  • H. Sternberg
  • G. Mesco
  • G. Cole
  • P. S. Timiras
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)

Abstract

The structural basis of the cellular disturbance in Alzheimer’s disease (AD) may involve the cytoskeleton. One of the major constituents of the cytoskeleton is the microtubule network. This is composed primarily of tubulin which has a molecular weight of 55 kd and assembles, under certain conditions, to form the microtubules (Cleveland et al., 1977). Other microtubular components include the microtubule associated proteins (MAPS), MAP I and MAP II, and Tau proteins, which co-purify with MAPs. “Tau” represents a class of several proteins which will be referred to collectively as Tau protein.

Keywords

Human Neuroblastoma Cell Neuritic Plaque Microtubule Assembly Paired Helical Filament Teratocarcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.W. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol. 103, 285–293, (1984).Google Scholar
  2. Argasinski, A., Sternberg, H., Fingado, B., Huynh, H., Timiras, P.S. Doxorubicin Effects Tau Protein Metabolism In Human Neuroblastoma Cells. Neurochemical Research, in press).Google Scholar
  3. Argasinski, A., Fingado, B., Huynh, H., Sternberg, H., and Timiras, P.S. “Tau Protein in Alzheimer’s Disease: Doxorubicin Effects in Cultured Human Cells” (abstract) American Physiological Soc. 1988.Google Scholar
  4. Baudier, J., and Cole, R.D., Phosphorylation of tau proteins to a state like that in Alzheimer brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids, J. Biol. Chem. 1987, 262: 17584–17590.Google Scholar
  5. Biedler, J.L., Helson, L., and Spengler, B.A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res., 33, 2643–2652 (1973).Google Scholar
  6. Binder, L.I., Frankfurter, A., and Rebhun, L.I. Differential localization of MAP-2 and tau in mammalian neurons in situ “ Ann. N.Y. Acad. Sci. 1986 466: 145–66.CrossRefGoogle Scholar
  7. Butler, M., and Shelanski, M.L., Microheterogeneity of microtubuleassociated tau proteins in living cells“ J. Neurochem. 47, 1517–22 (1986).CrossRefGoogle Scholar
  8. Chapman, J., Sela, B.A., Wertman, E., Michaelson, D., “Antibodies to Ganglioside GM1 in Patients with Alzheimer’s Disease” Neurosci. Lett. 1988 Mar 31 86 (2): 235–240.Google Scholar
  9. Cho, E.S., Spencer, P.S., and Jortner, B.S. Doxorubicin, in Experimental and Clinical Neurotoxicology. P.S. Spencer and H.H. Schaumberg, eds. Wilkins and Wilkins, Baltimore, pp. 430–439 (1980).Google Scholar
  10. Cleveland, D.W., Hwo, S.Y., Kirschner, M.W. “Physical and Chemical Properties of Purified Tau Factor and the Role of Tau in Microtubule Assembly” J. Mol. Biol. 1977 116: 227–247.CrossRefGoogle Scholar
  11. Cole, G.M. An in vitro Model for Alzheimer’s Disease Pathology. Ph.D. Dissertation, University of California, Berkeley, (1986).Google Scholar
  12. Cole, G.M. and Timiras, P.S. Aging-related pathology in human neuroblastoma and teratocarcinoma cell lines. In Model Systems of Development and Aging of the Nervous System, A. Vernadakis et al., eds., Martinus Nijhoff Publ., Boston, pp. 453–473 (1987a).Google Scholar
  13. Cole, G.M. and Timiras, P.S. Ubiquitin-protein conjugates in Alzheimer’s lesions. Neurosci. Let. 79, 207–212, (1987b).CrossRefGoogle Scholar
  14. Cole, G.M., Wu, K., and Timiras, P.S. A culture model for age-related human neurofibrillary pathology. Int. J. Dev. Neurosci. 3, 23–32 (1985).CrossRefGoogle Scholar
  15. Cole, GM. Dobkins, K.R., Hansen, L.A., Terry, R.D. and Saitoh, T. (1988) Brain Res., in press.Google Scholar
  16. Drubin, D.G., Kirschner, M.W. “Tau Protein Function in Living Cells” J. Cell. Biol. 1986 103 (No.6 Pt. 2) p. 2739–2746.CrossRefGoogle Scholar
  17. Drubin, D.G., Feinstein, S.C., Shooter, E.M., and Kirschner, M.W. Nerve Growth Factor Induced Neurite Outgrowth in PC12 Cells Involves the Coordinated Induction of Microtubule Assembly and Assembly Promoting Factors. J. Cell. Biol. 101, 1799–1807 (1985).CrossRefGoogle Scholar
  18. Geddes, J.W., Monaghan, D.T., Cotman, C.W., Cott, I.T., Kim, R.C., and Chui, H.C. Plasticity of hippocampal circuitry in Alzheimer’s disease. Science, 230 (4730) 1179–81 (1985).CrossRefGoogle Scholar
  19. Goedert, M., Wischik, C.M., Crowther, R.A., Walker, J.E., and Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filaments of Alzheimer’s disease: identification as the microtubule-associated protein Tau. Proc. Natl. Acad. Sci. USA, 85, 11, 4051–4055 (1988).CrossRefGoogle Scholar
  20. Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., and Binder, L.I. Abnormal phosphorylation of microtubule-associated protein (Tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 83, 4913–4917 (1986).CrossRefGoogle Scholar
  21. Haas, A.L., and Bright, P. M. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J. Cell Biol., 260, 23, 12464–12473 (1985).Google Scholar
  22. Hoshi, M., Nishida, E., Miyata, Y., Sakai, H., Miyoshi, T., Ogawara, H., and Ayikama, T. “Protein kinase C phosphorylates Tau and induces its functional alterations” FEBS Letters 1987, June 15, 217 (2): 237–41.CrossRefGoogle Scholar
  23. Iqbal, K., Grundke-Iqbal, I., Zaidi, T., Merz, P.A., Wen, G.Y., Shaikh, S.S., Wisniewski, H.M. “Defective brain microtubule assembly in Alzheimer’s Disease” Lancet, 1986 Aug. 23, 2 (8504): 421–426.Google Scholar
  24. Kosik, K.S. Joachim, C.L. and Selkoe, D. J. Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 83, 4044–4048 (1986).Google Scholar
  25. Kowall, N.W., Kosik, K.S. “The Cytoskeletal Pathology of Alzheimer’s Disease is Characterized by Aberrant Tau Distribution” Ann. Neurol. 22: 639–43, 1987.CrossRefGoogle Scholar
  26. Lamour, Y., Scarna, H., Roudier, M., Safer, S., and Davous, P. Serum Neuron-specific enolase in senile dementia of the Alzheimer’s type, Neurology 1987 37: 768–772.CrossRefGoogle Scholar
  27. Lee, G., Cowan, N., and Kirschner, M.W. “The Primary Structure and Heterogeneity Tau Protein from Mouse Brain” Science 239: 285–89, 1988.CrossRefGoogle Scholar
  28. Lindwall, G., and Cole, D. The purification of Tau protein and the occurrence of two phosphorylation states of Tau in brain. J. Biol. Chem, 259, 19, 12241–12245 (1984).Google Scholar
  29. Love, S., Saitoh, T., Quiada, S., Cole, G.M., and Terry, R.D. “Alz-50, ubiquitin, and Tau immunoreactivity of neurofibrillary tangles, Pick’s bodies, and Lewy bodies” J. Neuropath. Exp. Neurol. 1988 Jul. 47 (4): 393–405.CrossRefGoogle Scholar
  30. Mesco, E.R., Sternberg, H., Timiras, P.S. Immunological Identification of Tau Protein in Neuroblastoma Cells. American Aging Association, San Francisco, CA (1988).Google Scholar
  31. Miyata, Y., Hoshi, M., Mishida, E., Minami, Y., and Sakai, H. “Binding of MAP-2 and Tau to the intermediate filament reassembled from the neurofilament 70kDa subunit protein; Its regulation by Calmodulin” J. Biol. Chem. 1986, 261 (28): 13026–13030.Google Scholar
  32. Murti, K.G., Smith, H.,T., and Fried, V.A. “Ubiquitin is a Component of the Microtubule Network” Proc. Nat. Acad. Sci. U.S.A. 85(9):1301923, 1988.Google Scholar
  33. Probst, A., Basler, V., Bron, B.,-and Ulrich, J. Neuritic plaques in senile dementia of Alzheimer’s type: a golgi analysis in the hippocampal region. Brain Res. 268 (2), 249–254 (1983).Google Scholar
  34. Selden, S.C. and Pollard, T.D. Phosphorylation of microtubule associated protein regulates their interation with filaments. J. Biol. Chem. 258, 7064–7071 (1983).Google Scholar
  35. Sternberg, H., Mesco, G., Argasinski, A.B., Sanchez, I., and Timiras, P.S. Tau protein in LAN-5 cells. American Society for Neurochemistry (abstracts ), New Orleans, LA, (1988a).Google Scholar
  36. Sternberg, H., Baudier, J., Akizuki, K., Cole, G., Martin, W.H., Creutz, C.E., and Timiras, P.S., Similarities and differences between Tau protein and chromobindin A. Neurochem. Inter., (accepted Jan. 1988b ).Google Scholar
  37. Sternberg, H., Mesco, G., Fingado, B.H., Petrie, R., Dao, Q., Cole, G.M., and Timiras, P. S. Differentiation of a human neuroblastoma cell line influences Tau protein. Int. Soc. Develop. Neurosci. (abstracts), Jerusalem, Israel, (1988c).Google Scholar
  38. Wolozin, B.L., Pruchnicki, A., Dickson, D.W., and Davies, P. A neuronal antigen in the brains of Alzheimer patients. Science, 232, 4750, 648–50 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. Sternberg
    • 1
  • G. Mesco
    • 1
  • G. Cole
    • 1
  • P. S. Timiras
    • 1
  1. 1.Department of Physiology-AnatomyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations