The Ontogeny of Adrenergic Fibers in Rat Spinal Cord

  • Holli Bernstein-Goral
  • Martha Churchill Bohn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)


Preganglionic neurons play a pivitol role in the integration of descending central signals involved in sympathetic and parasympathetic regulation. However, the number of neurotransmitter systems which converge in the preganglionic cell column has made study of the complex synaptology of the preganglionic neuron and the development of its innervation exceedingly difficult. Although many neurotransmitters have been identified in the region of preganglionic neurons, it was not until recently that the termination of phenotypically defined fibers was demonstrated on preganglionic neurons which project to identified sympathetic targets. This chapter reviews studies which have focused on the development and synaptology of one of these projections which arises in adrenergic neurons located in the medulla oblongata and which terminates in the thoracic region of spinal cord. Study of adrenergic neurons has been facilitated by the specific expression of the epinephrine-synthesizing enzyme, phenylethanolamine N-methyltransferase (PNMT), which distinguishes adrenergic neurons from other types of catecholamine-synthesizing cells. Study of this particular projection is interesting due to the implication of adrenergic neurons in a wide array of autonomic and endocrine functions including cardiovascular regulation (Saavedra et al., 1979; Ross et al., 1984b; Goodchild et al., 1984; Morrison et al., 1988), reproduction (Coen and Coombs, 1983; Sheaves et al., 1985; and the stress response (Saavedra and Torda, 1980; Mezey et al., 1984; Liposits et al., 1986 a,b).


Spinal Cord Tyrosine Hydroxylase Locus Coeruleus Adrenal Medulla Medulla Oblongata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astier, B., Kitahama, K., Denoroy, L., Jouvet, M., Renoud B. (1987). Immunohistochemical evidence for the adrenergic medullary longitudinal bundle as a major ascending pathway to the locus coeruleus. Neuroscience Lett. 74 (2): 132–1.CrossRefGoogle Scholar
  2. Beato, K.K., Burke, W.J., Joh, T.H., and Haring, J.H. (1987). Cortical epinephrine projections demonstrated by retrograde tracing combined with tyrosine hydroxylase and phenylethanolamine N-methyltransferase immunocytochemistry. Soc. Neurosci. Abst. 13: 366–1Google Scholar
  3. Bernstein-Goral, H.L. (1988). The ontogeny of adrenergic fibers in rat spinal cord. Ph.D. Dissertation. State University of New York at Stony Brook.Google Scholar
  4. Bernstein-Goral, H., and Bohn, M.C. (1988). Ontogeny of adrenergic fibers in rat spinal cord in relationship to adrenal preganglionic neurons. J. Neurosci. Res. 21: 333–351.Google Scholar
  5. Bernstein-Goral, H., and Bohn, M.C. (1989). Phenylethanolamine N-methyltransferase(PNMT) immunoreactive terminals synapse on adrenal preganglionic neurons in the rat spinal cord. Neurosc. (in press).Google Scholar
  6. Black, I.B., Bloom, E.M., Hamill, R.W. (1976). Central regulation of sympathetic neuron development. Proc. Natl. Acad. Sci. USA 73 (10): 3575–3578.CrossRefGoogle Scholar
  7. Bohn, M.C. Goldstein, M., Black, I.B. (1981). Role of glucocorticoids in expression of the adrenergic phenotype in rat embryonic adrenal gland. Dev. Biol. 82: 1–10.Google Scholar
  8. Bohn, M.C., Goldstein, M., Black, I.B. (1986). Expression and development of phenylethanolamine N-methyltransferase (PNMT) in rat brain stem: studies with glucocorticoids. Dev. Biol. 114: 180–193.CrossRefGoogle Scholar
  9. Coen, C.W., Coombs, M.C. (1983). Effects of manipulating catecholamines on the incidence of the preovulatory surge of luteninizing hormone and ovulation in the rat: Evidence for a necessary involvement of hypothalamic adrenaline in the normal or midnight surge. Neurosci. 10: 187–206.Google Scholar
  10. Daikoku, S., Kinutani, M., Sako, M., (1977). Development of adrenal medullary cells in rats with reference to synaptogenesis. Cell Tiss. Res. 179: 77–86.Google Scholar
  11. Forehand, C.J. (1985). Density of somatic innervation on mammalian autonomic ganglion cells is inversely related to dendritic complexity and preganglionic convergence. J. Neurosci. 5 (12): 3403–3408.Google Scholar
  12. Foster, G.A., Schultzberg, M., Goldstein, M., Hökfelt T. (1985a). Differential ontogeny of three putative catecholamine cell types in the postnatal rat retina. Develop. Brain Res. 22: 187–196Google Scholar
  13. Foster, G.A., Schultzberg, M., Goldstein, M., Hökfelt, T. (1985b). Ontogeny of phenylethanolamine N-methyltransferase-and tyrosine hydoxylase-like immunoreactivity in presumptive adrenaline neurons of the foetal rat central nervous system. J. Comp. Neurol. 236: 348–381.CrossRefGoogle Scholar
  14. Foster G.A., Schultzberg, M., Dahl, D., Goldstein, M., Verhofstad, A.A.J. (1985c). Ephemeral existence of a single catecholamine synthetic enzyme in the olfactory placode and the spinal cord of the embryonic rat. Int. J. Devel. Neuroscience. 3 (6): 597–608.CrossRefGoogle Scholar
  15. Foster, G.A., Sundstrom, E., Helmer-Matyjek, E., Goldstein, M., Hökfelt T. (1987). Abundance in the embryonic brainstem of adrenaline during the absence of detectable tyrosine hydroxylase activity. J. Neurochem. 48: 202–207.CrossRefGoogle Scholar
  16. Gagner, J., Gauthier, S., Sourkes, T.L. (1983). Participation of spinal monoaminergic and cholinergic systems in the regulation of adrenal tyrosine hydoxylase. Neuropharm. 22: 45–53.CrossRefGoogle Scholar
  17. Gauthier, P., and Reader, T.A. (1982). Adrenomedullary secretory response to midbrain stimulation in rat: effects of depletion of brain catecholamines or serotonin. Can. J. Physiol. Pharmacol. 60; 1464–1474.Google Scholar
  18. Goodchild, A.K., Moon, E.A., Dampney, R.A.L., Howe, P.R.C. (1984). Evidence that adrenaline neurons in the rostral ventolateral medulla have a vasopressor function. Neuroscience Lett. 45: 267–272.CrossRefGoogle Scholar
  19. Guyenet, P., and Young, B. (1987). Projections of nucleus paragigantocellularis lateralis to locus coeruleus and other structures in rat. Brain Res. 406: 171–184.CrossRefGoogle Scholar
  20. Hamill, R.W., Bloom, E.M., Black, I.B. (1977). The effect of spinal cord transection on the development of cholinergic and adrenergic sympathetic neurons. Brain Res. 134: 269–278.CrossRefGoogle Scholar
  21. Hamill, R.W., Cochard, P., Black, I.B. (1983). Long-term effects of spinal transection on the development and function of sympathetic ganglia. Brain Res. 266: 21–27.CrossRefGoogle Scholar
  22. Hökfelt, T., Foster, G.A., Johansson, O., Schultzberg, M., Holets, V., Ju, G., Skagerberg, G., Palkovits, M. (1988). Central phenylethanolamine N-methyltransferaseimmunoreactive neurons: Distribution, projections, fine structure, ontogeny, coexisting peptides. In; Epinephrine in the Central Nervous System. (J. Stolk, D. Uprichard, K. Fuxe, eds.) Oxford U. Press. pp. 10–45.Google Scholar
  23. Hökfelt, T., Fuxe, K., Goldstein, M., Johansson, O. (1974). Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66: 235–251.CrossRefGoogle Scholar
  24. Hornby, P.J., and Piekut, D.T. (1987). Catecholamine distribution and relationship to magnocelluar neurons in the paraventricular nucleus of the rat. Cell Tiss. Res. 248 (2): 239–246.Google Scholar
  25. Howe, P.R.C., Costa, M., Furness, J.B., Chalmers, J.P. (1980). Simultaneus demonstration of phenylethanolamine N-methyltransferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata. Neurosci. 5: 2229–2238.Google Scholar
  26. Johnson, Jr., E.M., Caserta, M., Ross, L.L. (1977). Effects of destruction of the postganglionic sympathetic neurons in neonatal rats on development of choline acetyltransferase and survival of preganglionic cholinergic neurons. Brain Res. 136: 455–464.CrossRefGoogle Scholar
  27. Kaiser, K.P., Karten, H.J., Katz, B., and Bohn, M.C. (1987) Catecholaminergic horizontal and amacrine cells in the feret retina. J. Neurosci. 7: 3996–4007.Google Scholar
  28. Kalia, M., Woodward, D.J., Smith, W.K., Fuxe, K. (1985a). Rat medulla oblongata. IV. Topographical distribution of catecholaminergic neurons with quantitative three-dimensional computer reconstruction. J. Comp. Neurol. 233: 350–364.Google Scholar
  29. Kalia, M., Fuxe, K., Goldstein, M. (1985b). Rat medulla oblongata. III. Adrenergic (C1 amp; C2) neurons, nerve fibers and presumptive terminal processes. J.Comp. Neurol. 233: 333–349.Google Scholar
  30. Kirby, R.F., and McCarty, R. (1987). Ontogeny of functional sympathetic innervation to the heart and adrenal medulla in the preweanling rat. J. Autonom. Nerv. Syst. 19: 67–75.Google Scholar
  31. Kohno, J., Shinoda, K., Kawai, Y., Ohuchi, T., Ono, K., Shinotani, Y. (1988). Interaction between adrenergic fibers and intermediate cholinergic neurons in the rat spinal cord: A new double-immunostaining method for correlated light and electron microscopic observations. Neuroscience 25 (1): 113–212.CrossRefGoogle Scholar
  32. LaGamma, E.F., and Adler, J.H. (1988). Development of transynaptic regulation of adrenal enkephalin. Dev. Brain Res. 39: 177–182.Google Scholar
  33. Larramendi, L.M.H. (1969). Analysis of synaptogenesis in the cerebellum of the mouse. In: Neurobiology of cerebellar evolution and development, Amer. Med. Ass. Educ. amp; Res. Fdn., Chicago. pp. 803–843.Google Scholar
  34. Lau, C., Pylypiw, A., Ross, L. (1985). Development of serotonergic and adrenergic receptors in the rat spinal cord: effects of neonatal chemical lesions and hyperthyroidism. Dev. Brain Res. 19: 57–66.Google Scholar
  35. Lau, C., Ross, L.L., Whitmore, W.L., Slotkin, T.A. (1987). Regulation of adrenal chromaffin cell development by the central monoaminergic system: Differential control of norepinephine and epinephrine levels and secretory responses. Neurosci. 22 (3): 1067–1075.CrossRefGoogle Scholar
  36. Lawrence, J.M., Hamill, R.W., Cochard, P., Raisman, G., Black, I.B. (1981). Effects of spinal cord transection on synapse numbers and biochemical maturation in rat lumbar sympathetic ganglia. Brain Res. 212: 83–88.CrossRefGoogle Scholar
  37. Liposits, Zs., Phelix, C., Paull, W.K. (1986). Electron microscopic analysis of tyrosine hydroxylase, dopamine-B-hydroxylase and phenylethanolamine N-methyltransferase immunoreactive innervation of the hypothalamic paraventricular nucleus in the rat. Histochemistry 84: 105–120.CrossRefGoogle Scholar
  38. Liposits, Zs., Phelix, C., Paull, W.K. (1986). Adrenergic innervation of corticotropin releasing factor ( CRF)-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Histochemistry 84: 201–205.Google Scholar
  39. Makhail, Y., and Mahran, Z. (1965). Innervation of the cortical and medullary portions of the adrenal gland of the rat during postnatal life. Anat. Rec. 152: 431–438.Google Scholar
  40. Mefford, I.N. (1988). Are there epinephrine neurons in rat brain? Brain Res. Reviews 12: 383–395.CrossRefGoogle Scholar
  41. Mezey, E., Kiss, J.L., Skirboll, L.R., Goldstein, M., Axelrod, J. (1984). Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurons by depletion of hypothalamic adrenaline Nature 310: 140–141.Google Scholar
  42. Milner, T.A., Morrison, S.F., Abate, C., Reis, D.J. (1988). Phenylethanolamine Nmethyltransferase-containing terminals synapse directly on sympathetic preganglionic neurons in the rat. Brain Res. 448: 205–222.CrossRefGoogle Scholar
  43. Morrison, S.F., Milner, T.A., Reis, D.J. (1988). Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: Relationship to sympathetic nerve activity and the Cl adrenergic cell group. J. Neurosci. 8: 1286–1301.Google Scholar
  44. Nakamura, K., and Nakamura, K. (1978). Role of brainstem and spinal noradrenergic and adrenergic neurons in the development and maintenance of hypertension in spontaneously hypertensive rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 305: 127–133.Google Scholar
  45. Pieribone, V., Aston-Jones, G., Bohn, M.C. (1988). Most adrenergic afferents to locus coeruleus originate in the Cl ventrolateral medullary cell group: a fluorescent double labeling study. Neurosci. Lett. 85: 297–303.Google Scholar
  46. Pieribone, V.A., Aston-Jones, G., Bohn, M., Bernstein-Goral, H. (1987). Double labeling using flurogold reveals neurotransmitter identity of afferents to locus coeruleus. Soc. Neurosci. Abstr. 13: 14–58.Google Scholar
  47. Ross, C.A., Armstrong, D.A., Ruggiero, D.A., Pickel, V.M., Joh, T.H. Reis, D.J. (1981a). Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: a combined immunocytochemical and retrograde transport demonstration. Neuroscience Lett. 25: 257–262.Google Scholar
  48. Ross, C.A., Ruggiero, D.A., Reis, D.J. (1981b). Projections to the spinal cord from neurons close to the ventral surface of the hindbrain in the rat. Neuroscience Lett. 25: 145–148.CrossRefGoogle Scholar
  49. Ross, C.A., Ruggiero, D.A., Meeley, M.P., Park, D.H., Joh, T.H., Reis, D.J. (1984a). A new group of neurons in hypothalamus containing phenylethanolamine Nmethyltransferase ( PNMT) but not tyrosine hydroxylase. Brain Res. 306: 349–353.Google Scholar
  50. Ross, C.A., Ruggiero, D.A., Park, D.H., Joh, T.H., Sved, A.F., Fernandez-Pardal, J., Saavedra, J.M., Reis, D.J. (1984b). Tonic vasomotor control by the rostral ventrolateral medulla: effects of electrical or chemical stimulation of the areas containing Cl adrenaline neurons on arterial pressure, heart rate and plasma catecholamines and vasopressin. J. Neuroscience 4 (2): 474–494.Google Scholar
  51. Ross, C.A., Ruggiero, D.A., Joh, T.H., Park, D.H., Reis, D.J. (1984c). Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing Cl adrenaline neurons. J. Comp. Neurol. 228: 168–185.Google Scholar
  52. Ross, L.L., Smolen, A.J., Cherry, J. (1980). Spinal cord transection interferes with normal development of sympathetic preganglionic neurons. Soc. Neurosci. Abs. 6: 385.Google Scholar
  53. Ross, L.L., Smolen, A.J., Cherry, J. (1981). Supraspinal pathways regulate the development of the normal pattern and density of innervation of the adrenal medulla. Anat. Rec. 199: 127A.Google Scholar
  54. Ross, L.L., Pylypiw, A., Chmelewski. W. (1982). Development of catecholamines and adrenergic receptors in the rat spinal cord. Soc. Neurosci. Abstr. 8: 175.Google Scholar
  55. Ross, L.L., Smolen, A.J., McCarthy, L. (1983). Supraspinal pathways regulate the mitotic activity of adrenal medulla cells. Anat. Rec. 205: 167–168.Google Scholar
  56. Ruggiero, D.A., Ross, C.A., Anwar, M., Park, D.H., Joh, T.H. Reis D.J. (1985). Distribution of neurons containing phenylethanolamine N-methyltransferase in medulla and hypothalamus of the rat. J. Comp. Neurol. 239: 127–154.CrossRefGoogle Scholar
  57. Saavedra, J.M., Kvetnansky, R., Kopin, I.J. (1979). Adrenaline, noradrenaline, and dopamine levels in specific brainstem areas of acutely immobilized rats. Brain Res. 160: 271–280.CrossRefGoogle Scholar
  58. Saavedra, J.M., Torda, T. (1980). Increased brainstem and decreased hypothalamic adrenaline-forming enzyme after acute and repeated immobilization stress in the rat. Neuroendocrinol. 31: 142–146.CrossRefGoogle Scholar
  59. Sawchenko, P.E., and Swanson, L.W. (1982). Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol. 205: 260–272.Google Scholar
  60. Schafer, T., Schwab, M.E., Thoenen, H. (1983). Increased formation of preganglionic synapses and axons due to a retrograde trans-synaptic action of nerve growth factor in the rat sympathetic nervous system. J. Neurosci. 3 (7): 1501–1510.Google Scholar
  61. Schramm, L.P., Adair, J.R., Striblin, J.M., Gray, L.P. (1975). Preganglionic innervation of the adrenal gland of the rat: a study using horseradish peroxidase. Exp. Neurol. 49: 540–553.Google Scholar
  62. Schramm, L.P. Stribling, J.M., Adair, J.R. (1976). Developmental reorientation of sympathetic preganglionic neurons in the rat. Brain Res. 106: 166–171.CrossRefGoogle Scholar
  63. Seidler, F.J., and Slotkin, T.A. (1985). Adrenomedullary function in the neonatal rat: responses to acute hypoxia. J. Physiol. ( London ) 358: 1–16.Google Scholar
  64. Seidler, F.J., and Slotkin, T.A. (1986a). Non-neurogenic adrenal catecholamine release in the neonatal rat: exocytosis or diffusion? Dev. Brain Res. 28: 274–277.CrossRefGoogle Scholar
  65. Seidler, F.J., and Slotkin, T.A. (1986b). Ontogeny of adrenomedullary responses to hypoxia and hypoglycemia: Roll of splanchnic innervation. Brain Res. Bull. 16: 11–14.Google Scholar
  66. Sheaves, R., Laynes, R., and MacKinnon, C.B. (1985). Evidence that central epinephrine neurons participate in the control and regulation of neuroendocrine events during the estrous cycle. Endocrinol. 116: 542–546.CrossRefGoogle Scholar
  67. Smolen, A., and Raisman, G. (1980). Synapse formation in the rat superior cervical ganglion during normal development and after neonatal deafferentiation. Brain Res. 181: 315–323.CrossRefGoogle Scholar
  68. Smolen, A.J., and Beaston-Wimmer, P. (1986). Dendritic development in the rat superior cervical ganglion. Dev. Brain Res. 29: 245–252.Google Scholar
  69. Strack, A.M., Sawyer, W.B., Marubio, L.M., Loewy, A.D. (1988). Spinal origin of sympathetic preganglionic neurons in the rat. Brain Res. 455: 187–191.CrossRefGoogle Scholar
  70. Swanson, L.M., Sawchenko, P.E., Berod, A., Hartman, B.K., Helle, K.B., Van Orden, D.E. (1981). An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J. Comp. Neurol. 196: 271–285.Google Scholar
  71. Teitelman, G., Baker, H., Joh, T.H., Reis, D.J. (1979). Appearance of catecholamine synthesizing enzymes during development of rat embryo sympathetic nervous system: Possible role of tissue environment. Proc. Natl. Acad. Sci. U.S.A. 76: 509–513.CrossRefGoogle Scholar
  72. Tucker, D.C., Saper, C.B., Ruggiero, D.A., Reis, D.J. (1987). Organization of central adrenergic pathways: I. Relationship of ventrolateral medullary projections to the hypothalamus and spinal cord. J. Comp. Neurol. 259: 591–603.Google Scholar
  73. Vaughn, J.E., Henrikson, C.K., Grieshaber, J.A. (1974). A quantitative study of synapses on motor neuron dendritic growth cones in developing mouse spinal cord. J. Cell Biol. 60: 664–672.CrossRefGoogle Scholar
  74. Vaughn, J.E., Sims, T., Nakashima, M. (1977). A comparison of the early developmental axodendritic and axosomatic synapses upon embryonic mouse spinal motor neurons. J. Comp. Neurol. 175: 79–100.CrossRefGoogle Scholar
  75. Verhofstad, A.A., Hökfelt, T., Goldstein, M., Steinbusch, H.W.M., Jooster, H.W.J (1979). Appearance of tyrosine hydroxylase, aromatic amino acid decarboxylase, dopamine B-hydroxylase and phenylethanolamine N-methyltransferase during the ontogenesis of the adrenal medulla. Cell Tissue Res. 200: 1–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Holli Bernstein-Goral
    • 1
  • Martha Churchill Bohn
    • 2
  1. 1.Department of Anatomy and Cell BiologyGeorgetown University,School of MedicineUSA
  2. 2.Department of Neurobiology and AnatomyUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations