Monosialogangliosides and Their Action in Modulating Neuroplastic Behaviors of Neuronal Cells

  • Stephen D. Skaper
  • Guido Vantini
  • Laura Facci
  • Alberta Leon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)


The phenomenon of neuronal plasticity reflects the ability of nerve cells to modify their behaviors under the influence of extrinsic agents. As with any living system, neural tissue represents a dynamic organization, whose elements are continuously changing due to interactions with one another and with their extraneural environment. Neurons are thus subject to influences from the extracellular fluid and matrix, and the other cells with which they are in direct contact. This array of extrinsic influences impinging on the neuron constitutes, in broad terms, what can be called the microenvironment of these cells. Because of their many origins and functions, agents affecting neuronal behaviors represent a crucial and diverse element in determining how nerve cells will respond to cues from the microenvironment. As we shall see later on, these cues can carry either positive or negative signals for the neuron. Our ability to alter the response(s) of neuronal cells to such extrinsic agents will constitute a powerful tool for modulating the neuroplastic behaviors of the former — an important consideration for effecting regeneration and repair processes in the brain. Such is the subject of the present chapter.


Nerve Growth Factor Choline Acetyltransferase Activity Exogenous Glutamate Tubulin mRNA Neurite Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, S., 1983, Gangliosides in the nervous system, Neurochem. Internatl., 5: 507.CrossRefGoogle Scholar
  2. Barbin, G., Manthorpe, M., and Varon, S., 1984, Purification of the chick eye ciliary Neuronotrophic Factor ( CNTF), J. Neurochem., 43: 1468.CrossRefGoogle Scholar
  3. Barde, Y.-A., Edgar, D., and Thoenen, H., 1982, Purification of a new neurotrophic factor from mammalian brain, EMBO J., 1: 549.Google Scholar
  4. Cuello, A.C., Kenigsberg, R., Maysinger, D., and Garofolo, L., 1988, Application of gangliosides and nerve growth factor to prevent cholinergic degeneration in the central nervous system, in: “New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects”, R.W. Ledeen, E.L. Hogan, G. Tettamanti, A.J. Yates, and R.K.Yu, eds., Fidia Research Series, Vol. 14, Liviana Press, PadovaGoogle Scholar
  5. Dal Toso, R., Skaper, S.D., Ferrari, G., Vantini, G., Toffano, G., and Leon, A., 1988, Ganglioside involvement in membrane-mediated transfer of trophic information. Relationship to GM1 effects following CNS injury, in: “Pharmacological Approaches to the Treatment of Spinal Cord Injury,” D.G. Stein, and B.A. Sabel, eds., Plenum Press, New York.Google Scholar
  6. Doherty, P., Dickson, J.G., Flanigan, T.P., and Walsh, F.J., 1985, Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones, J. Neurochem., 44: 1259.CrossRefGoogle Scholar
  7. Facci, L., Milani, D., Leon, A., and Skaper, S.D., 1988, Monosialogangliosides antagonize anoxia-induced neuronal injury in vitro, Pharmacol. Res. Comm., 20 (Suppl. 2): 141.Google Scholar
  8. Favaron, M., Manev, H., Alho, H., Bertolino, M., Ferret, B., Guidotti, A., and Costa, E., 1988, Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex, Proc. Natl. Acad, Sci. USA 85: 7351.Google Scholar
  9. Ferrari, G., Fabris, M., and Gorio, A., 1983, Gangliosides enhance neu-rite outgrowth in PC12 cells, Dev. Brain Res., 8: 215.Google Scholar
  10. Hatten, M.E., Lynch, M., Rydel, R.R., Sanchez, J., Joseph-Silverstein, J., Moscatelli, D., and Rifkin, D.B., 1988, In vitro neurite extension by granule neurons is dependent upon astroglial-derived fibroblast growth factor, Dev. Biol., 125: 280.Google Scholar
  11. Hefti, F., Dravid, A., and Hartikka, J., 1984, Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions, Brain Res., 293: 305.CrossRefGoogle Scholar
  12. Herschman, H., 1986, Polypeptide growth factors and the CNS, Trends Neurosci., 9: 53.CrossRefGoogle Scholar
  13. Katoh-Semba, R., Skaper, S.D., and Varon S., 1984, Interaction of GM1 ganglioside with PC12 pheochromocytoma cells: serum and NGF-dependent effects on neurite growth (and proliferation), J. Neurosci. Res., 12: 299.Google Scholar
  14. Karpiak, S.E., Li, Y.S., and Mahadik, S.P., 1987, Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: protection of membrane function, Stroke, 18: 184.CrossRefGoogle Scholar
  15. Katoh-Semba, R., Skaper, S.D., and Varon, S., 1986, GM1 ganglioside treatment of PC12 cells stimulates ganglioside, glycolipid and lipid, but not glycoprotein synthesis independently from the effects of nerve growth factor, J. Neurochem., 46: 574.CrossRefGoogle Scholar
  16. Korsching, S., 1986, The role of nerve growth factor in the CNS, Trends Neurosci., 9: 570.CrossRefGoogle Scholar
  17. Korsching, S., Auburger, G., Heumann, R., Scott, J., and Thoenen, H., 1985, Levels of NGF and its mRNA in the central nervous system of the rat correlate with cholinergic innervation, EMBO J., 4: 1389.Google Scholar
  18. Ledeen, R.W., Hogan, E.L., Tettamanti, G., Yates, A.J., and Yu, R.K., “New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects,” Fidia Research Series, Vol. 14, Liviana Press, Padova.Google Scholar
  19. Leon, A., Dal Toso, R., Presti, D., Facci, L., Giorgi, O., and Toffano, G., 1984, Dorsal root ganglia and nerve growth factor: a model for understanding the mechanism of GM1 effects on neuronal repair, J. Neurosci. Res., 12: 277.Google Scholar
  20. Leon, A., Dal Toso, R., Presti, D., Benvegnù, D., Facci, L., Kirschner, G., Tettamanti, G., and Toffano, G., 1988, Development and survival of neurons in dissociated fetal mesencephalic serum-free cell cultures: II. Modulatory effects of gangliosides, J. Neurosci., 8: 746.Google Scholar
  21. Levi-Montalcini, R., 1966, Nerve growth factor: its mode of action on sensory and sympathetic neurons, Harvey Lect., 60: 217.Google Scholar
  22. Levi-Montalcini, R., 1987, The Nerve Growth Factor thirty five years later, Science, 237: 1154.CrossRefGoogle Scholar
  23. Manthorpe, M., Skaper, S.D., Williams, L.R., and Varon S., 1986, Purification of adult rat sciatic nerve ciliary neuronotrophic factor, Brain Res., 367: 282.CrossRefGoogle Scholar
  24. Mobley, W.C., Rutowski, J.L., Tennekoon, G.I., Gemski, J., Buchanan, K., and Johnston, M.V., 1986, Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurones, Mol. Brain Res., 1: 53.Google Scholar
  25. Morgan, J.I., and Seifert, W., 1979, Growth factors and gangliosides: a possible new perspective in neuronal growth control, J. Supramol. Struct., 10: 110.Google Scholar
  26. Morrison, R.S., Kornblum, H.I., Leslie, F.M., and Bradshaw, R.A., 1987, Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor, Science, 238: 72.CrossRefGoogle Scholar
  27. Obata, K., Oide, M., and Handa, S., 1977, Effects of glycolipids on in vitro development of neuromuscular junction, Nature, 266: 553.CrossRefGoogle Scholar
  28. Purpura, D.P., and Baker, H.J., 1977, Neurite induction in mature cortical neurons in feline GM1-ganglioside storage disease, Nature, 266: 553.CrossRefGoogle Scholar
  29. Roisen, F.J., Bartfeld, H., Nagele, R., and Yorke, G., 1981, Ganglioside stimulation of axonal sprouting in vitro, Science, 214: 577.CrossRefGoogle Scholar
  30. Rothman, S., and Olney, J.W., 1986, Glutamate and the pathophysiology of hypoxic-ischemic brain damage, Ann. Neurol., 19: 105.Google Scholar
  31. Rubini, R., Fogarolo, F., Biasiolo, F., Fiori, M.G., Seren, S., Lazzaro, A., and Leon, A., 1988, Brain ischemia in rat: pharmacologic evidence for the efficacy of AGF2 (inner ester of monosialoganglioside GM1) as shown by computerized EEG, Pharmacol. Res. Comm., 20 (Suppl. 2): 334.Google Scholar
  32. Rybak, S., Ginsburg, I., and Yavin, E., 1983, Gangliosides stimulate neurite outgrowth and induce tubulin mRNA accumulation in neural cells, Biochem. Biophys. Res. Commun., 116: 974.Google Scholar
  33. Sbaschnig-Agler, M., Ledeen, R., and Grafstein, B., 1984, Ganglioside changes in the regenerating goldfish optic system: comparison with glycoproteins and phospholipids, J. Neurosci. Res., 12: 221.Google Scholar
  34. Seren, M.S., Rubini, R., Lazzaro, A., Zanoni, R., Zanetti, A., Fiori, M.G., Toffano, G., and Leon, A., 1988, Monosialoganglioside effects following transitory global cerebral ischemia in rodents, Pharmacol. Res. Comm., 20 (Suppl. 2): 355.Google Scholar
  35. Skaper, S.D., Katoh-Semba, R., and Varon, S., 1985, GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions, Dev. Brain Res., 23: 19.Google Scholar
  36. Sparrow, J.R., Mc Guinness, C., Schwartz, M., and Grafstein, B., 1984, Antibodies to ganglioside inhibit goldfish optic nerve regeneration in vivo, J. Neurosci. Res., 12: 233.Google Scholar
  37. Spirman, N., Sela, B.A., and Schwartz, M., 1982, Antiganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish retinal explants, J. Neurochem., 39: 874.CrossRefGoogle Scholar
  38. Tanaka, K., Dora, E., Urbanics, R., Greenberg, J.H., Toffano, G., and Reivich, M., 1986, Effects of the ganglioside GM1, on cerebral metabolism, microcirculation, recovery kinetics of ECoG and histology, during the recovery period following focal ischemia in cats, Stroke, 17: 1170.CrossRefGoogle Scholar
  39. Unsicker, K., Reichert-Preibsch, H., Schmidt, R., Pettmann, B., Labour-dette, G., and Sensenbrenner, M., 1987, Astroglial and fibroblast growth factors have neurotrophic functions for cultured peripheral and central nervous system neurons. Proc. Natl. Acad. Sci. USA, 84: 5459.Google Scholar
  40. Vantini, G., Fusco, M., Bigon, E., Leon, A., 1988, GM1 ganglioside potentiates the effect of nerve growth factor in preventing vinblastine-induced sympathectomy in newborn rats, Brain Res., 448: 252.CrossRefGoogle Scholar
  41. Varon, S., Manthorpe, M., Davis, G.E., Williams, L.R., and Skaper, S.D., 1988, Growth factors, in: “Functional Recovery in Neurological Disease”, S.G. Waxman, ed., vol. 47, Raven Press, New York.Google Scholar
  42. Varon, S., Skaper, S.D., and Katoh-Semba, R., 1986, Neuritic responses to GM1 ganglioside in several in vitro systems, in: “Neuronal Plasticity and Gangliosides”, G. Tettamanti, R. Ledeen, K. Sandhoff, Y. Nagai, and G. Toffano, eds., Fidia Research Series, Vol. 6, Liviana Press, Padova.Google Scholar
  43. Walicke, P.A., 1988, Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions, J. Neurosci., 8: 2618.Google Scholar
  44. Walicke, P., Cowan, W.M., Ueno, N., Baird, A., and Guillemin, R., 1986, Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension, Proc. Natl. Acad. Sci. USA, 83: 3012.Google Scholar
  45. Watters, D.J., and Hendry, I.A., 1987, Purification of a ciliary neurotrophic factor from bovine heart, J. Neurochem., 49: 705.CrossRefGoogle Scholar
  46. Willinger, M., and Schachner, M., 1980, GM1 ganglioside as a marker for neuronal differentiation in mouse cerebellum, Dev. Biol., 74: 101.CrossRefGoogle Scholar
  47. Yamakawa, T., and Nagai, Y., 1978, Glycolipids at the cell surface and their biological functions, Trends Biochem. Sci., 3: 128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Stephen D. Skaper
    • 1
  • Guido Vantini
    • 1
  • Laura Facci
    • 1
  • Alberta Leon
    • 1
  1. 1.Fidia Research LaboratoriesAbano TermeItaly

Personalised recommendations