Advertisement

Structural and Molecular Polarity in Retinal Photoreceptor Neurons: Roles for the Cytoskeleton

  • Ruben Adler
  • Steven A. Madreperla
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)

Abstract

The differentiation of neuronal cells involves the synthesis of cell-specific macromolecules, as well as the assembly of the latter into supramolecular entities responsible for complex patterns of cell organization. For example, axons are distinguished from dendrites by the presence or absence of ribosomes and by the specific distribution of molecules such as cytoskeletal proteins, a-bungarotoxin receptors and GAP-43, among others (Banker and Waxman, 1988; Goslin et al., 1988). Asymmetries in molecular distribution also occur within individual neuronal processes, as illustrated by the concentration of voltage-sensitive sodium channels at the nodes of Ranvier (Ritchie, 1977; Angelides, et al., 1988). Although all neurons seem to share a similar polarized pattern of organization, different types of neurons can be distinguished by unique variations of this common pattern. Cell-specific morphology and branching patterns of axons and dendrites provide clear examples of this type of diversity (i.e., Wuerker and Kirkpatrick, 1972; Peters et al., 1976; Bartlett and Banker, 1984).

Keywords

Lipid Droplet Outer Segment Photoreceptor Cell Nuclear Compartment Cone Photoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R., J. D. Lindsey, and C. L. Elsner. 1984. Expression of cone-like properties by chick embryo neural retinal cells in glial-free monolayer cultures. J Cell Biol. 99: 1173 - 1178.Google Scholar
  2. Adler, R. 1986. Developmental predetermination of the structural and molecular polarization of photoreceptor cells. Dev. Biol. 117:520-527.Google Scholar
  3. Adler, R. 1987. The differentiation of retinal photoreceptors and neurons in vitro. In: Progress in Retinal Research. Vol. 6. N. Osborne and G. Chader, editors. Pergamon Press, London. 1 - 27.Google Scholar
  4. Almers, W. and C. Stirling. 1984. Distribution of transport proteins over animal cell membranes. J. Membrane Biol. 77:169-186.Google Scholar
  5. Angelides, K. J., L. W. Elmer, D. Loftus and E. Elson. 1988. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J. Cell Biol. 106:1911-1925.Google Scholar
  6. Axelrod, D. 1983. Lateral motion of membrane proteins and biological function. J. Memb. Biol. 75:1-10.Google Scholar
  7. Banker, G. A., and A. B. Waxman. 1988. Hippocampal neurons generate natural shapes in cell culture. In Intrinsic Determinants of Neuronal Form and Function. R. J. Lasek and M. M. Black, editors. Alan R. Liss, Inc., New York, pp. 61 - 82.Google Scholar
  8. Bartlett, W. P., Banker, G. A. 1984. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J. Neurosci. 4(8):1944-1953.Google Scholar
  9. Besharse J. C. 1986. Photosensitive membrane turover: differentiated domains and cell-cell interaction. In The Retina: A Model for Cell Biology Studies, Part I, R. Adler and D. Farber, editors. Academic Press, New York, 297 - 339.Google Scholar
  10. Bok D. 1985. Retinal photoreceptor-pigment epithelial interactions. Friedenwald Lecture. Invest. Ophth. and Vis. Sci. 26:1659-1694.Google Scholar
  11. Burnside, B., and A. Dearry. 1986. Cell motility in the retina. In The Retina: A Model for Cell Biology Studies. R. Adler and D. Farber, editors. Academic Press, Orlando, 152 - 206.Google Scholar
  12. Dichter, M. A. 1978. Rat cortical neurons in cell culture: Culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res. 149: 279 - 293.Google Scholar
  13. Fischbach, G. D. 1970. Synaptic potentials recorded in cell cultures of nerve and muscle. Science 169: 1331 - 1333.Google Scholar
  14. Goslin, V., D. J. Schreyer, J. H. P. Skene, and G. Banker. 1988. Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature 336: 672 - 674.Google Scholar
  15. Grun, G. 1982. The development of the vertebrate retina: a comparative survey. Adv. Anat. Embryol. Cell Biol. 78:1-85.Google Scholar
  16. Madreperla, S. A., and R. Adler. 1989. Opposing microtubule-and actin-dependent forces in the development and maintenance of structural polarity in retinal photoreceptors. Dev. Biol. 131:149160.Google Scholar
  17. Madreperla, S. A., M. Edidin and R. Adler (1989a) Role of the cytoskeleton in the polarized distribution of the Na+,K+-ATPase in isolated photoreceptors. J. Cell Biol. 107:783a.Google Scholar
  18. Madreperla, S. A., M. Edidin and R. Adler (1989b) Na+,K+-ATPase in retinal photoreceptors: a role of cytoskeletal attachments. Submitted.Google Scholar
  19. McGrail, K. M., and K. J. Sweadner. 1986. Immunofluorescent localization of two different Na,K-ATPases in the rat retina and in identified dissociated retinal cells. J. Neurosci. 6(5): 12721283.Google Scholar
  20. Nelson, W. J., and P. J. Veshnock. 1986. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 103:1751-1765.Google Scholar
  21. Papermaster, D. S., B. G. Schneider, D. Defoe, and J. C. Besharse. 1986. Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors. J. Histochem. Cytochem. 34:5-16.Google Scholar
  22. Peters, A., Palay, S. L. Webster, H. 1976. The fine structure of the nervous system. In: The neurons and the Supporting Cells. Philadelphia: W. B. Saunders. 1 - 406.Google Scholar
  23. Ritchie, J. M., Rogart, R. B. 1977. Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc. Natl. Acad. Sci. USA 74(1):211-5.Google Scholar
  24. Scott, B. E. Engelbert, V. E., Fisher, K. C. 1969. Morphological and electrophysiological characteristics of dissociated chick embryonic spinal ganglion cells in culture. Exp. Neurol. 23: 230 - 248.Google Scholar
  25. Siegel G. J., S. A. Ernst, Lin, and T. J. Desmond. 1988. Heterogeneity of the a+-catalytic subunit in mouse brain Na+,K+-ATPase. Trans. Am. Soc. Neurochem. 19: 252.Google Scholar
  26. Solomon, F., Zurn, A. 1981. The cytoskeleton and specification of neuronal morphology. Neurosci. Res. Prog. Bull. 19(1):100-135.Google Scholar
  27. Stirling, C. E., and P. V. Sarthy. 1985. Localization of the Na-K pump in turtle retina. J. Neurocytol. 14:33-47.Google Scholar
  28. Waxman, S. G. 1986. The astrocyte as a component of the mode of Ranvier. Trends in Neurosci., 9: 250 - 253.CrossRefGoogle Scholar
  29. Wolf, D. E. 1987. Diffusion and the control of membrane regionalization. Ann. NY Acad. Aci. 247 - 261.Google Scholar
  30. Wuerker, R. B., Kirkpatrick, J. B. 1972. Neuronal microtubules, neurofilaments, and microfilaments. Int. Rev. Cytol. 33:45-75.Google Scholar
  31. Yazulla, S., and K. M. Studholme. 1987. Ultracytochemical distribution of ouabain-sensitive, K+-dependent, p-nitrophenylphosphatase in the synaptic layers of goldfish retina. J. Comp. Neurol. 261(1):74-84.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Ruben Adler
    • 1
  • Steven A. Madreperla
    • 1
  1. 1.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations