Neural Models of Motion Perception

  • Thomas V. Papathomas
  • Amy S. Rosenthal
  • Bela Julesz
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)


Apparent motion (AM) involves two or more “frames” of images, where elements are displaced from frame to frame to elicit the percept of motion. An important question is how a certain element, or feature, is matched across frames to yield the veridical motion percept without false target localization. This is known as the “correspondence problem” (Julesz, 1968; Ullman, 1979). One possibility is that bottom-up, hard-wired neural mechanisms compute motion automatically, without solving explicitly the correspondence problem. At the other extreme top-down motion-tuned mechanisms can first extract specific features of moving objects (such as edges, corners, etc.) and then track these features from one frame to the next to achieve a solution to the correspondence problem. It is quite possible that a wide variety of motion sensing units exist in the visual system, covering the entire spectrum that is defined between the two extremes outlined above. Neural mechanisms that are tuned to a specific direction of motion have been found in the striate cortex, as well as in the extrastriate areas, such as area V5, otherwise known as MT (middle temporal), and area MST (medial superior temporal) (Tovee, 1996).


Apparent Motion Neural Model Motion Perception Motion Mechanism Binocular Disparity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelson, E. H. and Bergen, J., 1985, Spatiotemporal energy models for the perception of motion, J. Opt. Soc. Am. 2A: 284–299.CrossRefGoogle Scholar
  2. Adelson, E. H. and Movshon, J. A., 1982, Phenomenal coherence of moving visual patterns, Nature. 300: 523–525.CrossRefGoogle Scholar
  3. Anstis, S. M., 1970, Phi movement as a subtraction process, VisIon Res. 10: 1411–1430.CrossRefGoogle Scholar
  4. Barlow, H. B., 1979, Reconstructing the retina image in space and time, Nature. 279: 189–190.CrossRefGoogle Scholar
  5. Barlow, H. B. and Hill, R. M., 1973, Evidence for a physiological explanation of the waterfall phenomenon and figurai after-effects, Nature. 200: 1545–1347.Google Scholar
  6. Benton, C. P, Johnston, A, and Owuo, W. 1997. Perception nf motion direction Üu luminance-and contrast-defined reversed-phi motion sequences, Vision Res. 3: 238–2399.Google Scholar
  7. Buacr, E., Sperling, B., Lu, Z.L. 1999. Measuring the amplification n[attention, JocNatl. Aovd.3oi. /S A. 86: 11001–11688.Google Scholar
  8. Braddick, 0., 1974, A short-range process in apparent motion, Vision Research, 25: 839–847.Google Scholar
  9. Braun, J., 2000. Targeting visual motion, Nature Neurosci. 3: 9–11.CrossRefGoogle Scholar
  10. Bruce, V., Green, P. R., and Georgeson, M. A., 1996, Visual Perception: Physiology, Psychology, and Ecology, 3rd edition, Psychology Press, East Sussex, UK.Google Scholar
  11. Cavanagh, P., 1995, Is there low-level motion processing for non-luminance-based stimuli?, in Early Vision and Beyond, TV. Papathomas, C. Chubb, A. Gorea, and E. Kowler, eds, MIT Press, Cambridge, Massachusetts, pp. 113–119.Google Scholar
  12. Cavanagh, P. and Anstis, S. M., 1991, The contribution of color to motion in normal and color-deficient observers, Vision Res. 31: 2109–2148.CrossRefGoogle Scholar
  13. Cavanagh, P. and Mather, G., 1989, Motion: The long and the short of it, Spatial Vis. 4: 103–129.CrossRefGoogle Scholar
  14. Cavanagh, P., Tyler, C.W., and Favreau, O. E., 1984, Perceived velocity of moving chromatic gratings, J. Opt. Soc Am. A. 1: 893–899.CrossRefGoogle Scholar
  15. Chubb, C. and Sperling, G., 1988, Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception, J. Opt. Soc. Am. A. 5: 1986–2006.MathSciNetCrossRefGoogle Scholar
  16. Chubb, C. and Sperling, G., 1989, Second-order motion perception: Space-time separable mechanisms, Proc. Workshop wn Visual Motion, March 2O’2%. i909, Irvine, CA, IEEE Computer Society Press, Washington, D.C., pp. 126–138.Google Scholar
  17. Chuhh, C. aud Spuding. G, l99l. Teuuurnguiby:Basiotombfoomudyiu8ombun’fruotexuoe. J.andyuth. 38: 41l - 440.Google Scholar
  18. Clifford C. W. and Vaina L. M., 1999, A computational model of selective deficits in first and second-order motion processing. Vision Res. 39: 330.Google Scholar
  19. Cropper, S. J. and Derrington, A. M., 1996, Rapid colour-specific detection of motion in human vision, Nature. 379: 72–74.CrossRefGoogle Scholar
  20. DeCarlo, D. and Metaxas, D., 1996, The integration of optical flow and deformable models with applications to human face shape and motion estimation, Proc. CVPR ‘86, pp. 231–298.Google Scholar
  21. DeCarlo, D. and Metaxas, D., 2000, Optical flow constraints on deformable models with applications to face tracking, Intern at. I Computer Vision. 38: 99–127.CrossRefMATHGoogle Scholar
  22. DeYoe, E. A. and VanEssen, D. C., 1988, Concurrent processing streams in monkey visual cortex, Trends in Neurosci. 11: 219–226.CrossRefGoogle Scholar
  23. Dobkins, K. R. and Albright, T. D., 1994, What happens if it changes color when it moves? The nature of chromatic input to Macaque visual area MT, J. Neurosci. 14: 4854–4870.Google Scholar
  24. Emerson, R. C., Bergen, J., and Adelson, E. H., 1992, Directionally selective complex cells and the computation of motion energy in the cat visual cortex, Vision Res. 32: 203–218.CrossRefGoogle Scholar
  25. Exner, S., 1875, Experimentelle Untersuchung der einfachsten psychischen Processe, Archiv fir die Gesamte Physiologie des Menschen und der Tiere. 11: 403–432.CrossRefGoogle Scholar
  26. Farell, B., 1995, Spatial structure and the perceived motion of objects of different colors, in Early Vision and Beyond, T. V. Papathomas, C. Chubb, A. Gores, and E. Kowler, eds, MIT Press, Cambridge, Massachusetts, pp. 121–131.Google Scholar
  27. Gorea, A. and Papathomas, T. V., 1993, Double-opponency as a generalized concept in texture segregation illustrated with color, luminance and orientation defined stimuli, Opt. Soc. Am. A. 10: 1451–1462.Google Scholar
  28. Gores, A., Papathomas, T. V., and Kovacs, I., 1993a, Motion perception with spatiotemporally matched chromatic and achromatic information reveals a ‘slow’ and a ‘fast’ motion system, Vision Res. 33: 2515–2534.CrossRefGoogle Scholar
  29. Gorea, A., Papathomas, T. V., and Kovacs, I., 1993b, Two motion systems with common and separate pathways for color and luminance, Proc. Natl. Acad. Sci. USA. 90: 11197–11201.CrossRefGoogle Scholar
  30. Grunewald, A., 1996, A model of transparent motion and non-transparent motion aftereffects, in: Advances in Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, eds, MIT Press, Cambridge, Massachusetts, pp. 837–843.Google Scholar
  31. Grunewald, A. and Lankheet, M. J..M., 1996, Orthogonal motion after-effect illusion predicted by a model of cortical motion processing, Nature. 384: 358–360.CrossRefGoogle Scholar
  32. Grunewald, A. and Mingolla, E, 1998, Motion after-effect due to binocular sum of adaptation to linear motion, Vision Res. 38: 2963–2971.CrossRefGoogle Scholar
  33. Heeger, D. J., 1991, Nonlinear model of neural responses in cat visual cortex, in Computational Models of Visual Processing, M. Landy, and J. A. Movshon, eds., MIT Press, Cambridge, Massachusetts.Google Scholar
  34. Hiris, E. and Blake, R., 1992, Another perspective in the visual motion after-effect, Proc. Natl. Acad. Sci. USA. 89: 9025–9028.CrossRefGoogle Scholar
  35. Johnston, A., McOwan, P. W., and Buxton, H., 1992, A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells, Proc. Royal Society of London. B. 250: 297–306.CrossRefGoogle Scholar
  36. Julesz, B., 1960, Binocular depth perception of computer-generated patterns, Bell System Technical Journal. 39: 1125–1162.CrossRefGoogle Scholar
  37. Julesz, B., 1968, Experiments in perception, Psychology Today. 2: 16–23.Google Scholar
  38. Julesz, B. andPayne, R. A., 1968, Differences between monocular and binocular stroboscopic movement perception, Vision Res. 8: 433–444.Google Scholar
  39. Krauskopf, J. and Farell, B., 1990, Influence of colour on the perception of coherent motion, Nature. 348: 328–331.CrossRefGoogle Scholar
  40. Livingstone, M. S. and Hubel, D. H., 1988, Segregation of form, color, movement and depth: Anatomy, Physiology and Perception, Science. 240: 740–749.CrossRefGoogle Scholar
  41. Lu, Z. L., Lesmes, L. A., and Sperling, G., 1999, The mechanism of isoluminant chromatic motion perception, Proc. Natl. Acad. Sci. USA. 96: 8289–8294.CrossRefGoogle Scholar
  42. Lu, Z. L. and Sperling, G., 1995, The functional architecture of human visual motion perception, Vision Res. 35: 2697–2722.CrossRefGoogle Scholar
  43. Marr, D. and Ullman, S., 1981, Directional selectivity and its use in early visual processing, Proc. R. Soc. London B. 211: 151–180.CrossRefGoogle Scholar
  44. Mather, G., 1980, The movement after-effect and a distribution-shift model for coding the direction of visual movement, Perception. 9: 379–392.CrossRefGoogle Scholar
  45. Mather, G., Verstraten, F., and Anstis, S. M., 1998, The Motion Aftereffect: A Modern Perspective, MIT Press, Cambridge, MA.Google Scholar
  46. Merigan, W. H. and Maunsell, J. H., 1993, How parallel are the primate visual pathways?, Annual Review of Neurosci. 16: 369–402.CrossRefGoogle Scholar
  47. Morikawa, K. and Zaidi, Q., 1999, Minimum velocity limits for motion energy detection, Invest. Ophthal. Vis. Sci, 40: 5191.Google Scholar
  48. Nishida, S. and Takeuchi, T., 1990, The effects of luminance on affinity of apparent motion, Vision Res. 30: 709–721.CrossRefGoogle Scholar
  49. Nishida, S. and Sato, T., 1993, Two kinds of motion aftereffects reveal different types of motion processing, Invest. Ophthal. Vis. Sci. 34: 1363.Google Scholar
  50. O’Keefe, L. P., Caradini, M., Beusmans, J. M. H., and Movshon, J. A., 1993, MT neuronal responses to 1st-and 2nd-order motion, Soc. for Neuroscience Abstracts, 19: 1283.Google Scholar
  51. Papathomas T. V., 2000, See how they turn: False depth and motion in Hughes’s reverspectives, Human Vision and Electronic Imaging, Proc. ISandT/SPIE Symposium on Electronic Imaging: Science and Technology, Conference on Human Vision and Electronic Imaging, San Jose, CA. 3959: 506–517.Google Scholar
  52. Papathomas, T. V. and DeCarlo, D., 1999, Top-down and bottom-up processes in 3-D face perception: Psychophysics and computational model, Perception. 28: 112–113.Google Scholar
  53. Papathomas, T. V., Gorea, A., and Chubb, C., 1996, Precise assessment of the effective mean luminance of texture patches: An approach based on reverse-phi apparent motion, Vision Res. 36: 3775–3784.CrossRefGoogle Scholar
  54. Papathomas, T. V., Gorea, A., and Julesz, B., 1991, Two carriers for motion perception: Color and luminance, Vision Res. 31: 1883–1891.CrossRefGoogle Scholar
  55. Papathomas, T.V., Kovacs, I., Gorea, A., and Julesz, B., 1995, A unified approach to the perception of motion, stereo, and static flow patterns, Behavior Res. Methods, Instruments and Computers. 27: 419–432.CrossRefGoogle Scholar
  56. Papathomas, T. V. and Rosenthal, A. S., 1996, Unified computational model for Fourier and non-Fourier motion, Proc.IEEE 22ndAnnual Northeast Bioengineering Conference, Piscataway, N.J., K.-J. Li and S. S. Reisman, eds., pp. 44–45.Google Scholar
  57. Patterson, R., Bowd, C., Phinney, R., Pohndorf, R., Barton-Howard, W.J. and Anqilletta, M., 1994, Properties of the stereoscopic (cyclopean) motion after-effect, Vision Res. 34: 1139–1147.CrossRefGoogle Scholar
  58. Ramachandran, V..S. and Gregory, R. L., 1978, Does colour provide an input to human motion perception? Nature. 275: 55–56.CrossRefGoogle Scholar
  59. Reichardt, W., 1961, Autocorrelation, a principle for the evaluation of sensory information by the central nervous system, in W.A. Rosenblith, ed., Sensory Communication, New York: Wiley.Google Scholar
  60. Rosenthal, A. S., 1996, Computational models for Fourier and non-Fourier motion, Master’s Thesis, Rutgers University.Google Scholar
  61. Schiller, P. H., Logothetis, N. K., and Charles, E. R., 1990, Role of color-opponent and broad-band channels in vision, Visual Neuroscience. 5: 321–346.CrossRefGoogle Scholar
  62. Schrater, P. R, Knill D. C., and Simoncelli, E. P., 2000, Mechanisms of visual motion detection, Nature Neuroscience. 3: 64–68.CrossRefGoogle Scholar
  63. Shorter, S., Bassetti, T., Tamura, E., Donnelly, M., Bowd, C., and Patterson, R., 2000, Stereoscopic (cyclopean) and luminance aftereffects induced by adaptation to global motion displays, Invest. Ophthal. Vis. Sci. 41: S737.Google Scholar
  64. Simoncelli, E. P., 1993, Distributed analysis and representation of visual motion, Ph.D. thesis, MIT, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts.Google Scholar
  65. Simoncelli, E. P. and Heeger, D. J., 1998, A model of neuronal responses in visual area MT, Vision Res. 38: 743–761.CrossRefGoogle Scholar
  66. Sperling, G., 1989, Three stages and two systems of visual processing, Spatial Vis. 4: 183–207.CrossRefGoogle Scholar
  67. Stoner, G. R. and Albright, T. D., 1992, Motion coherency rules are form-cue invariant, Vision Res. 32: 465–475.CrossRefGoogle Scholar
  68. Stromeyer, C. F. III, Eskew, R. T., and Kronauer, R. E., 1990, The most sensitive motion detectors in humans are spectrally opponent, Invest. Ophthal. Vis. Sci. 31: 241.Google Scholar
  69. Teller, D. Y. and Lindsey, D. T., 1993, Motion at isoluminance: motion dead zones in threedimensional color space, J. Opt. Soc. Am. 10A: 1324–1331.Google Scholar
  70. Tovee, M. J., 1996, An Introduction to the Visual System, Cambridge University Press, Cambridge, MA.Google Scholar
  71. Ullman, S., 1979, The Interpretation of Visual Motion, MIT Press, Cambridge, MA.Google Scholar
  72. Vaina, L. M. and Cowey, A., 1996, Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage. Proc. Royal Society of London B Biol Sci. 263: 1225–1232.CrossRefGoogle Scholar
  73. Vaina, L. M., Cowey, A., and Kennedy, D., 1999, Perception of first-and second-order motion: separable neurological mechanisms? Hum Brain Mapp. 7: 67–77.CrossRefGoogle Scholar
  74. Vaina, L. M., Makris, N., Kennedy D., and Cowey, A., 1999, The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Visual Neurosci. 15: 333–348.Google Scholar
  75. Vaina, L. M., Soloviev, S., Bienfang, D. C., and Cowey, A., 2000, A lesion of cortical area V2 selectively impairs the perception of the direction of first-order visual motion, Neuroreport. 11: 1039–1044.CrossRefGoogle Scholar
  76. van Santen, J. P. H. and Sperling, G., 1985, Elaborated Reichardt detectors, J. Opt. Soc. Am. 2A: 300–321.CrossRefGoogle Scholar
  77. Verstraten, F. A. J., Fredericksen, R. R, and van der Grind, W.A., 1994, Movement aftereffect of bivectorial transparent motion, Vision Res. 34: 349–358.CrossRefGoogle Scholar
  78. Watson, A. B. and Ahumada, A. J., Jr., 1985, Model of human visual-motion sensing, J. Opt. Soc. Am. 2A: 322–342.CrossRefGoogle Scholar
  79. Werkhoven, P., Snippe, H. P., and Koenderink, J. J., 1990, Metrics for the strength of lowlevel motion perception, J. Visual Communication and Image Representation. 1: 176–188.CrossRefGoogle Scholar
  80. Werkhoven, P., Sperling, G., and Chubb, C., 1993, The dimensionality of texture-defined motion: A single-channel theory, Vision Res. 33: 463–485.CrossRefGoogle Scholar
  81. Wertheimer, M., 1912, Experimentelle Studien Ober das Sehen von Bewegung, Zeitschrif fiir Psychologie. 61: 161–265.Google Scholar
  82. Wilson, H. R. and Kim, J., 1994, A model for motion coherence and transparency, Visual Neuroscience. 11: 1205–1220.CrossRefGoogle Scholar
  83. Zanker, J. M., 1995, Of models and men: mechanisms for human motion perception, in Early Vision and Beyond, T. V. Papathomas, C. Chubb, A. Gorea, and E. Kowler, eds., MIT Press, Cambridge, MA, pp. 155–165.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Thomas V. Papathomas
    • 1
  • Amy S. Rosenthal
    • 2
  • Bela Julesz
    • 3
  1. 1.Dept. of Biomedical Engineering and Laboratory of Vision ResearchRutgers UniversityPiscatawayUSA
  2. 2.Alpha TechnologiesPiscatawayUSA
  3. 3.Dept. of Psychology and Laboratory of Vision ResearchRutgers UniversityPiscatawayUSA

Personalised recommendations