Models of the Saccadic and Smooth Pursuit Systems

  • Jordan Pola
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)


Saccadic and smooth pursuit movements are among several eye movements that we make as we visually attend to objects in our environment. An important function of these two movements is to shift the direction of gaze (i.e., an imaginary line directed outward from the central fovea) to clearly view an object of interest. Both movements are concerned with the horizontal-vertical coordinates of objects. This is in contrast to vergence movements that deal with the proximal location of objects (see Chapter 11: Models of Saccadic-Vergence Interactions). A saccade is a rapid movement, perhaps the fastest of skeletal muscle movements, that quickly takes our direction of gaze from an initial point in space to some other point or target. A smooth pursuit movement is a slow to medium velocity movement that allows us to visually follow a moving target, and thus maintain our gaze on or near the target. It is generally thought that the stimulus for a saccade is target position with respect to the fovea, whereas the stimulus for smooth pursuit is target velocity relative to the retina. Saccades can occur without pursuit, and vice versa, but in many circumstances, the two types of movement act conjointly. For example, during visual following of a target moving at moderate to high velocity, smooth pursuit is typically supplemented by saccades. These saccades quickly reduce target offset from the fovea that develops when pursuit velocity is less than target velocity.


Superior Colliculus Smooth Pursuit Target Motion Target Velocity Forward Path 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, L. A., Dell’Osso L. F., and Daroff, R. B., 1978, Analog model for gaze-evoked nystagmus, IEEE 7’rans.Biamel Engin . 25: 71–75.CrossRefGoogle Scholar
  2. Abel, L. A., Dell’Osso, L. F., Schmitt D., and Daroff, R. B., 1980, Myaesthenia gravis: analog computer model, Exp. Neural. 68: 378–389.CrossRefGoogle Scholar
  3. Arai, K., Keller E. L., and Edelman, J. A., 1994, Two dimensional neural network model of the primate saccadic system, Neural Networks. 7: 1115–1135.CrossRefMATHGoogle Scholar
  4. Bahill, A. T., and McDonald, J. D., 1983, Smooth pursuit eye movements in response to predictable target motions, Vision Res. 23: 1573–1583.CrossRefGoogle Scholar
  5. Bahill, A. T., and Stark, L., 1979, The trajectories of saccadic eye movements, Sci. Am. 240: 108–117.CrossRefGoogle Scholar
  6. Becker, W., 1991, Saccades, in: Vision and Visual Dysfunction, Vol. 8, Eye Movements, R. H. S. Carpenter, ed., The Macmillan Press Ltd., London, pp. 95–137.Google Scholar
  7. Becker, W., and Jurgens, R., 1979, An analysis of the human saccadic system by means of double step stimuli, Vision Res. 19: 967–983.CrossRefGoogle Scholar
  8. Becker, W., and Jurgens, R., 1990, Human oblique saccades: quantitative analysis of the relation between horizontal and vertical components, Vision Res. 30: 893–920.CrossRefGoogle Scholar
  9. Buttner-Ennerver, J. A., and Horn, A. K. E., 1996, Pathways from the cell groups of the paramedian tracts to the floccular region, Ann. NY Acad. Sci. 781: 532–540.CrossRefGoogle Scholar
  10. Cannon, S. C., and Robinson, D. A., 1987, Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey, J Neurophysiol. 57: 1383–1409.Google Scholar
  11. de Bie, J., and van den Brink, G., 1986, A model for the slow control system during monocular fixation, Vision Res. 26: 1129–1142.CrossRefGoogle Scholar
  12. Dallos, P. J., and Jones, R. W., 1963, Learning behavior of the eye fixation control system, IEEE Trans. Automatic Control. 8: 218–227.CrossRefGoogle Scholar
  13. Dell’Osso, L. F., 1982, Congenital nystagmus: basic aspects, in: Functional Basis of Ocular Motility Disorders, G. Lennerstrand, D. S. Zee and E. L. Keller, eds., Pergamon Press, Oxford, pp. 129–138.Google Scholar
  14. Dodge, R., 1903, Five types of eye movements in the horizontal meridian plane of the field of regard, Ant. J. Physiol. 8: 307–329.Google Scholar
  15. Dodge, R., and Cline, T. S., 1901, The angle velocity of eye movements, Psychot Rev. 8: 145–157.CrossRefGoogle Scholar
  16. Droulez, J., and Berthoz, A., 1988, Spatial and temporal transformation in visuo-motor coordination, in: Neural Computers, R. Eckmiller and C. von der Malsburg, eds., Springer-Verlag, Berlin, pp. 345–357.Google Scholar
  17. Dursteler, M. R., Wurtz, R. H., and Newsome, W. T., 1987, Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey, J. Neurophysiol. 57: 1262–1287.Google Scholar
  18. Fender, D. H., and Nye, P. W., 1961, An investigation of the mechanism of eye movement control, Kybernetik. 1: 81–88.CrossRefGoogle Scholar
  19. Fuchs, A. F., and Luschei, E. S., 1970, Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movements, J. Neurophysiol. 33: 382–392.Google Scholar
  20. Grossberg, S., Roberts, K., Aguilar M., and Bullock, D., 1997, A neural model of multimodal adaptive saccadic eye movement control by superior colliculus, J. Neurosci. 17: 9706–9725.Google Scholar
  21. Honda, H., 1991, The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades, Vision Res. 31: 1915–1921.CrossRefGoogle Scholar
  22. Huebner, W. P., Leigh, R. J., Seidman, S. H., Thomas, C. W., Billion, C., DiScenna, A. O., and Dell’Osso, L. F., 1992, Experimental tests of a superposition hypothesis to explain the relationship between the vestibuloocular reflex and smooth pursuit during horizontal combined eye-head tracking in humans, J Neurophysiol. 68: 1775–1792.Google Scholar
  23. Jurgens, R., Becker, W., and Kornhuber, H. H., 1981, Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback, Biol. Cybern, 39: 87–96.CrossRefGoogle Scholar
  24. Keller, E. L., and Robinson, D. A., 1972, Abducens unit behavior in the monkey during vergence movements. Vision Res. 12: 369–382.CrossRefGoogle Scholar
  25. Lefevre, P., and Galiana, H. L., 1992, Dynamic feedback to the superior colliculus in a neural network model of the gaze control system, Neural Networks. 5: 871–890.CrossRefGoogle Scholar
  26. Leigh, R. J., and Zee, D. S., 1999, The Neurology of Eye Movements, Third Edition, Oxford University Press, New York.Google Scholar
  27. Lisberger, S. G., and Westbrook, L. E., 1985, Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys, J Neurosci. 5: 1662–1673.Google Scholar
  28. Luebke, A. E., and Robinson, D. A., 1988, Transition dynamics between pursuit and fixation suggest different systems, Vision Res. 28: 941–946.CrossRefGoogle Scholar
  29. Kommerell, G., and Taumer, R., 1972, Investigation of the eye tracking system through stabilized retinal images, in: Cerebral Control of Eye Movements and Motion Perception, J. Dichgans and E. Bizzi, eds., S. Karger, Basel, pp. 288–297.Google Scholar
  30. Krauzlis, R. J., and Lisberger, S. G., 1994, A model of visually-guided smooth pursuit eye movements based on behavioral observations, J. Comp. Neurosci. 1: 265–283.CrossRefGoogle Scholar
  31. Krauzlis, R. J., and Miles, F. A., 1996, Transitions between pursuit eye movements and fixation in the monkey: dependence on context, Neurophysiol. 76: 1622–1638.Google Scholar
  32. Krauzlis, R. J., Basso, M., A., and Wurtz, R., H., 1997, Shared motor error for multiple eye movements, Science. 276: 1693–1695.Google Scholar
  33. Meyer, C. H., Lasker, A. G., and Robinson, D. A., 1985, The upper limit of human smooth pursuit velocity, Vision Res. 25: 561–563.CrossRefGoogle Scholar
  34. Michael, J., and Melville Jones, G., 1966, Dependence of visual tracking capability upon stimulus predictability, Vision Res. 6: 707–716.CrossRefGoogle Scholar
  35. Morris, E. G., and Lisberger, S. G., 1987, Different responses to small visual errors during initiation and maintenance of smooth-pursuit eye movements in monkeys, J. Neurophysiol. 58: 1351–1369.Google Scholar
  36. Munoz, D. P., and Wurtz, R. H., 1995, Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades, J. Neurophysiol. 73: 2334–2348.Google Scholar
  37. Newsome, W. T., Wurtz, R. H., Dursteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey, I Neurosci. 3: 825–840.Google Scholar
  38. Neary, C., 1986, Control of Monkey Smooth Pursuit Eye Movements in Open-Loop and Closed-Loop Conditions. Unpublished doctoral dissertation, State University of New York State College of Optometry.Google Scholar
  39. Neary, C., Pola J., and Wyatt, H. J., 1987, Target position: a stimulus for smooth pursuit eye movement in the monkey, in: From Physiology to Cognition, J. K. O“Regan and A. Levy-Schoen, eds., Elsevier, Amsterdam, pp. 257–363.Google Scholar
  40. Optican, L. M., and Robinson, D. A., 1980, Cerebellar-dependent adaptive control of primate saccadic system, J Neurophysiol. 44: 1058–1076.Google Scholar
  41. Pola, J., 1976, Voluntary saccades, eye position, and perceived direction, in: Eye Movements and Psychological Processes, R. A. Monty and J. W. Senders, eds., Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 245–254.Google Scholar
  42. Pola, J., and Wyatt, H. J., 1980, Target position and velocity: the stimuli for smooth pursuit eye movement, Vision Res. 20: 523–534.CrossRefGoogle Scholar
  43. Pola, J., and Wyatt, H. J., 1997, Offset dynamics of human smooth pursuit eye movements: effects of target presence and subject attention, Vision Res. 37: 2579–2595.CrossRefGoogle Scholar
  44. Pola, J., and Wyatt, H. J., 2001, The role of target position in smooth pursuit deceleration and termination, Vision Res. 41: 655–669.CrossRefGoogle Scholar
  45. Quaia, C., Lefevre, P., and Optican, L M., 1999, Model of the control of the saccades by superior colliculus and cerebellum, J. Neurophysiol. 82: 999–1018.Google Scholar
  46. Quaia, C., and Optican, L. M., 1997, A model with distributed vectorial premotor bursters accounts for the component stretching of oblique saccades, J. Neurophysiol. 78: 1120–1134.Google Scholar
  47. Rashbass, C., 1961, The relation between saccadic and smooth tracking eye movements, J. Physio., Lond. 159: 326–338.Google Scholar
  48. Ritchie, L., 1976, Effects of cerebellar lesions on saccadic eye movements, J. Neurophysiol. 39: 1246–1256.Google Scholar
  49. Robinson, D. A., 1964, The mechanics of human saccadic eye movements, J. Physiol., Lond. 174: 245–264.Google Scholar
  50. Robinson, D. A., 1970, Oculomotor unit behavior in the monkey, J. Neurophysiol. 33: 393–404.Google Scholar
  51. Robinson, D. A., 1973, Models of the saccadic eye movement control system, Kybernetik 14: 71–83.CrossRefGoogle Scholar
  52. Robinson, D. A., 1975, Oculomotor control signals, in: Basic Mechanisms of Ocular Motility and Their Clinical Implications, G. Lennerstrand and P. Bach-y-Rita, eds., Pergamon Press, Oxford, pp. 337–374.Google Scholar
  53. Robinson, D. A., Gordon, J. L., and Gordon, S. E., 1986, A model of the smooth pursuit eye movements system, Bio. Cybernet. 55: 43–57.CrossRefGoogle Scholar
  54. Robinson, F. R., Straube, A., and Fuchs, A. F., 1993, Role of the caudal fastigial nucleus in saccade generation. H. Effects of muscimol inactivation, J. Neurophysiol. 70: 1741–1758.Google Scholar
  55. Segraves, M. A., and Goldberg, M. E., 1994, Effect of stimulus position and velocity upon the maintenance of smooth pursuit eye velocity, Vision Res. 34: 2477–2482.CrossRefGoogle Scholar
  56. Schiller, P. H., True, S. D., and Conway, J. L., 1980, Deficits in eye movements following frontal eye field and superior colliculus ablations, J. Neurophysiol. 44: 1175–1189.Google Scholar
  57. Scudder, C. A., 1988, A new local feedback model of the saccadic burst generator, J. Neurophysiol. 59: 1455–1475.Google Scholar
  58. Stark, L., Vossius, G., and Young, L. R., 1962, Predictive control of eye tracking movements, IRE (IEEE) Trans. Human Factors in Electronics. 3: 52–57.CrossRefGoogle Scholar
  59. Takagi, M., Zee, D. S., and Tamargo, R. J., 1998, Effects of lesions of the oculomotor vermis on eye movements in primate: saccades, J. Neurophysiol. 80: 1911–1931.Google Scholar
  60. Van Gisbergen, J. A. M., Robinson, D. A. and Gielen, S., 1981, A quantitative analysis of generation of saccadic eye movements for burst neurons, J. Neurophysiol. 45: 417–442.Google Scholar
  61. Van Opstal, A. J., and Kappan, H., 1993, A two-dimensional ensemble coding model for spatial-temporal transformation of saccades in monkey superior colliculus. Network 4: 19–38.CrossRefMATHGoogle Scholar
  62. Weitzman, D. M., Ma, T. P., Optican L. M., and Wurtz, R. H., 1991, Superior colliculus neurons mediate the dynamic characteristics of saccades, J Neurophysiol. 66: 1716–1737.Google Scholar
  63. Waitzrnan, D. M., Optican, L. M., Ma, T. P., and Wurtz, R. H., 1988, Superior colliculus neurons provide the saccadic error signal, Exp. Brain Res. 72: 649–652.Google Scholar
  64. Westheimer, G., 1954, Mechanism of saccadic eye movements, A. M. A. Arch. Ophthal. 52: 710–724.CrossRefGoogle Scholar
  65. Wheeless, L. L., Boynton, R. M., and Cohen, G. H., 1966, Eye-movement responses to step and pulse-step stimuli, I Opt. Soc. Am. 56: 956–960.CrossRefGoogle Scholar
  66. Wurtz, R. H., and Mohler, C. W., 1976, Organization of monkey superior colliculus: enhanced visual response of superficial layer cells. J. Neurophysiol. 39: 745–765.Google Scholar
  67. Wyatt, H. J., and Pola, J., 1981, Slow eye movements to eccentric targets, Invest. Ophthal. Visual Sci. 21: 477–483.Google Scholar
  68. Wyatt, H. J., and Pola, J., 1983. Smooth pursuit eye movements under open-loop and closed-loop conditions, Vision Res. 23: 1121–1131.CrossRefGoogle Scholar
  69. Wyatt, H. J., and Pola, J., 1987, Smooth pursuit eye movements with step-ramp stimuli: the influence of attention and stimulus extent, Vision Res. 27: 1565–1580.CrossRefGoogle Scholar
  70. Wyatt, H. J., Pola, J., Fortune, B., and Posner, M., 1994, Smooth pursuit eye movements with imaginary target defined by extrafoveal cues, Vision Res. 34: 803–820.CrossRefGoogle Scholar
  71. Yasui, S., and Young, L. R., 1975, Perceived visual motion as effective stimulus to pursuit eye movement system, Science. 190: 906–908.CrossRefGoogle Scholar
  72. Young, L. R., and Stark, L., 1963, Variable feedback experiments testing a sampled data model for eye tracking movements, IRE (IEEE) Trans. Human Factors in Electronics. 4: 38–51.CrossRefGoogle Scholar
  73. Zee, D. S., Optican, L. M., Cook, J. D., Robinson, D. A., and Engel, W. K., 1976, Slow saccades in spino-cerebellar degeneration, Arch. Neurol. 33: 243–251.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jordan Pola
    • 1
  1. 1.Department of Vision SciencesState University of New York, State College of OptometryNewYorkUSA

Personalised recommendations