Advertisement

Metamorphosis of the Insect Nervous System

Influences of the Periphery on the Postembryonic Development of the Antennal Sensory Pathway in the Brain of Manduca sexta
  • John G. Hildebrand

Abstract

During the development of the nervous system, specific cell-cell contacts form among maturing neurons. The mechanisms by which those specific interactions take place and lead to the formation of appropriate synaptic connections and the establishment of normal neural pathways are of great interest in contemporary developmental neurobiology. Similarly intriguing is the question of the role of such cell-cell contacts in the survival and differentiation of the participating neurons.

Keywords

Sensory Neuron Antennal Lobe Optic Lobe Adult Development Sensory Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, H., 1978, Postembryonic development of the visual system of the locust, Schistocerca gregaria, II. An experimental investigation of the formation of the retina-lamina projection, J. Embryol. Exp. Morphol. 46:147–170.PubMedGoogle Scholar
  2. Black, I. B., Hendry, I. A., and Iversen, L. L., 1971, Transsynaptic regulation of growth and development of adrenergic neurons in the mouse sympathetic ganglion, Brain Res. 34:229–240.PubMedCrossRefGoogle Scholar
  3. Black, I. B., Hendry, I. A., and Iversen, L. L., 1972, Role of postsynaptic neurons in the biochemical maturation of presynaptic cholinergic nerve terminals in a mouse sympathetic ganglion, J. Physiol. (London) 221:149–159.Google Scholar
  4. Boeckh, J., and Boeckh, V., 1979, Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum of Antheraea pernyi and A. polyphemus (Saturnidae), J. Comp. Physiol. 132:235–242.CrossRefGoogle Scholar
  5. Boeckh, J., Boeckh, V., and Kühn, A., 1977, Further data on the topography and physiology of central olfactory neurons in insects, in: Olfaction and Taste, Volume 6 (J. Le Magnen, and P. MacLeod, eds.), Information Retrieval, London, pp. 315–321.Google Scholar
  6. Bollenbacher, W. E., Smith, S. L., Goodman, W., and Gilbert, L. I., 1981, Ecdysteroid titer during larval-pupal-adult development of the tobacco hornworm, Manduca sexta, Gen. Comp. Endocrinol. 44:302–306.CrossRefGoogle Scholar
  7. Camazine, S. M., and Hildebrand, J. G., 1979, Central projections of antennal sensory neurons in mature and developing Manduca sexta, Soc. Neurosci. Abstr. 5:155.Google Scholar
  8. Christensen, T. A., and Hildebrand, J. G., 1984, Functional anatomy and physiology of male-specific pheromone-processing interneurons in the brain of Manduca sexta, Soc. Neurosci. Abstr. 10:862.Google Scholar
  9. Coudron, T. A., Law, J. H., and Koeppe, J. K., 1981, Insect hormones, Trends Biochem. Sci. 6:248–251.CrossRefGoogle Scholar
  10. Cowan, W. M., and Wenger, E., 1967, Cell loss in trochlear nucleus of chick during normal development and after radical extirpation of the optic vesicle, J. Exp. Zool. 164:267–280.PubMedCrossRefGoogle Scholar
  11. Dennis, M. J., 1981, Development of the neuromuscular junction: Inductive interactions between cells, Annu. Rev. Neurosci. 4:43–68.PubMedCrossRefGoogle Scholar
  12. Dethier, V. G., 1941, The antennae of lepidopterous larvae, Bull. Mus. Comp. Zool. Harvard Univ. 87:455–507.Google Scholar
  13. Edwards, J. S., 1969, Postembryonic development and regeneration of the insect nervous system, Adv. Insect Physiol. 6:97–137.CrossRefGoogle Scholar
  14. Eichenbaum, D. M., and Goldsmith, T. H., 1968, Properties of intact photoreceptor cells lacking synapses, J. Exp. Zool. 169:15–32.PubMedCrossRefGoogle Scholar
  15. Gottschewski, G. M. H., 1960, Morphogenetische Untersuchungen an in vitro wachsenden Augenanlagen von Drosophila melanogaster, Wilhelm Roux’ Arch. 152:204–229.CrossRefGoogle Scholar
  16. Granger, N. A., and Bollenbacher, W. E., 1981, Hormonal control of insect metamorphosis, in: MetamorphosisA Problem in Developmental Biology, 2nd ed. (L. I. Gilbert and E. Frieden, eds.), Plenum Press, New York, pp. 105–137.Google Scholar
  17. Guth, L., 1957, Effects of glossopharyngeal nerve transsection on the circumvallate papilla of the rat, Anat.Rec. 28:715–731.CrossRefGoogle Scholar
  18. Harris, A. J., 1974, Inductive functions of the nervous system, Annu. Rev. Physiol. 36:251–305.PubMedCrossRefGoogle Scholar
  19. Harrow, I. D., and Hildebrand, J. G., 1982, Synaptic interactions in the olfactory lobe of the moth Manduca sexta, Soc. Neurosci. Abstr. 8:528.Google Scholar
  20. Highnam, K. C., 1981, A survey of invertebrate metamorphosis, in: MetamorphosisA Problem in Developmental Biology, 2nd ed., (L. I. Gilbert and E. Frieden, eds.), Plenum Press, New York, pp. 43–73.Google Scholar
  21. Hildebrand, J. G., 1980, Development of putative acetylcholine receptors in normal and deafferented antennal lobes during metamorphosis of Manduca sexta, in: Receptors for Neurotransmitters, Hormones, and Pheromones in Insects (D. B. Sattelle, L. M. Hall, and J. G. Hildebrand, eds.), Elsevier/North Holland, Amsterdam, pp. 209–220.Google Scholar
  22. Hildebrand, J. G., Hall, L. M., and Osmond, B. C, 1979, Distribution of binding sites for 125I-labeled α-bungarotoxin in normal and deafferented antennal lobes of Manduca sexta, Proc Natl. Acad. Sci. U.S.A. 76:499–503.PubMedCrossRefGoogle Scholar
  23. Hildebrand, J. G., Matsumoto, S. G., Tolbert, L. P., Schneiderman, A. M., and Camazine, S. M., 1982, Postembryonic development of the antennal lobes in the moth Manduca sexta, Neurosci. Res. Prog. Bull. 20:891–900.Google Scholar
  24. Jawlowski, H., 1954, Über die Struktur des Gehirnes bei Saltatoria, Ann. Univ. Mariae Curie-Sklodowska Sect. C 11:403–434.Google Scholar
  25. Kingan, T. G., and Hildebrand, J. G., 1983, Sexually dimorphic expression of polypeptides in antennal sensory neurons in the brain of Manduca sexta, Soc. Neurosci. Abstr. 9:835.Google Scholar
  26. Kopéc, S., 1922, Mutual relationship in the development of the brain and eyes of Lepidoptera, J. Exp. Zool. 36:459–468.Google Scholar
  27. Landmesser, L., and Pilar, G., 1972, The onset and development of transmission in the chick ciliary ganglion, J. Physiol. (London) 222:691–713.Google Scholar
  28. Lawrence, P. A., 1966, Development and determination of hairs and bristles in the milkweed bug, Onco-peltus fasciatus (Lygaeidae, Hemiptera), J. Cell Sci. 1:475–498.PubMedGoogle Scholar
  29. Levi-Montalcini, R., 1949, The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts, J. Comp. Neurol. 91:209–242.PubMedCrossRefGoogle Scholar
  30. Levine, R. B., and Truman, J. W., 1982, Metamorphosis of the insect nervous system: Changes in morphology and synaptic interactions of identified neurones, Nature (London) 299:250–252.CrossRefGoogle Scholar
  31. Macagno, E. R., 1977, Abnormal synaptic connectivity following UV-induced cell death during Daphnia development, in: Cell and Tissue Interactions (J. W. Lash and M. M. Burger, eds.), Raven Press, New York, pp. 293–309.Google Scholar
  32. Macagno, E. R., 1979, Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Branchiopoda). I. Interactions between embryonic retinular fibers and laminar neurons, Dev. Biol. 73:206–238.PubMedCrossRefGoogle Scholar
  33. Macagno, E. R., 1981, Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Branchiopoda). II. Induced retardation of optic axon ingrowth results in a delay in laminar neuron differentiation,/. Neurosci. 1:945–955.Google Scholar
  34. Matsumoto, S. G., and Hildebrand, J. G., 1981, Olfactory mechanisms in the moth Manduca sexta: Response characteristics and morphology of central neurons in the antennal lobes, Proc. R. Soc. (London) Ser. B 213:249–277.CrossRefGoogle Scholar
  35. Maxwell, G. D., and Hildebrand, J. G., 1981, Anatomical and neurochemical consequences of deaffer-entation in the development of the visual system of the moth Manduca sexta, J. Comp. Neurol. 195:667–680.PubMedCrossRefGoogle Scholar
  36. Meinertzhagen, I. A., 1977, Development of neuronal circuitry in the insect optic lobe, in: Society for Neuroscience Symposia, Volume II, Approaches to the Cell Biology of Neurons (W. M. Cowan and J. A. Ferrendelli, eds.) Society for Neuroscience, Bethesda, Maryland, pp. 92–119.Google Scholar
  37. Meyerowitz, E. M., and Kankel, D. F., 1978, A genetic analysis of visual system development in Drosophila melanogaster, Dev. Biol. 62:112–142.CrossRefGoogle Scholar
  38. Montague, R. A., Kent, K. S., Imperato, M. T., and Hildebrand, J. G., 1983, Projections of antennallobe output neurons in the brain of Manduca sexta, Soc. Neurosci. Abstr. 9:216.Google Scholar
  39. Mouze, M., 1978, Role des fibres post-rétiniennes dans la croissance du lobe optique de la larve d’Aeshna cynea Müll. (Insecte Odonate), Wilhelm Roux’ Arch. 184:325–350.CrossRefGoogle Scholar
  40. Nordlander, R. H., and Edwards, J. S., 1969, Postembryonic brain development in the Monarch butterfly, Danausplexippusplexippus, L. I. Cellular events during brain morphogenesis, Wilhelm Roux’ Arch. 162:197–217.CrossRefGoogle Scholar
  41. Nordlander, R. H., and Edwards, J. S., 1970, Postembryonic brain development in the Monarch butterfly, Danaus plexippus plexippus L. III. Morphogenesis of centers other than the optic lobes, Wilhelm Roux’ Arch. 164:247–260.CrossRefGoogle Scholar
  42. Pipa, R. L., 1973, Proliferation, movement, and regression of neurons during the postembryonic development of insects, in: Developmental Neurobiology of Arthropods (D. Young, ed.), Cambridge University Press, United Kingdom, pp. 105–129.Google Scholar
  43. Pipa, R. L., 1978, Patterns of neural reorganization during the postembryonic development of insects, Int. Rev. Cytol. (suppl.) 7:403–438.Google Scholar
  44. Prescott, D. J., Hildebrand, J. G., Sanes, J. R., and Jewett, S., 1977, Biochemical and developmental studies of acetylcholine metabolism in the central nervous system of the moth, Manduca sexta, Comp. Biochem. Physiol. 56C:77–84.Google Scholar
  45. Prillinger, L., 1981, Postembryonic development of the antennal lobes in Periplaneta americana L., Cell Tissue Res. 215:563–575.PubMedCrossRefGoogle Scholar
  46. Purves, D., 1976, Long-term regulation in the vertebrate peripheral nervous system, Int. Rev. Physiol. Neurophysiol. II 10:125–177.Google Scholar
  47. Riddiford, L. M., and Truman, J. W., 1978, Biochemistry of insect hormones and insect growth regulators, in: Biochemistry of Insects (M. Rockstein, ed.), Academic Press, New York, pp. 307–357.Google Scholar
  48. Sanes, J. R., and Hildebrand, J. G., 1975, Nerves in the antennae of pupal Manduca sexta (Lepidoptera: Sphingidae), Wilhelm Roux’ Arch. 178:71–78.CrossRefGoogle Scholar
  49. Sanes, J. R., and Hildebrand, J. G., 1976a, Structure and development of antennae in a moth, Manduca sexta, Dev. Biol 51:282–299.CrossRefGoogle Scholar
  50. Sanes, J. R., and Hildebrand, J. G., 1976b, Origin and morphogenesis of sensory neurons in an insect antenna, Dev. Biol. 51:300–319.PubMedCrossRefGoogle Scholar
  51. Sanes, J. R., and Hildebrand, J. G., 1976c, Acetylcholine and its metabolic enzymes in developing antennae of the moth, Manduca sexta, Dev. Biol. 52:105–120.CrossRefGoogle Scholar
  52. Sanes, J. R., Hildebrand, J. G., and Prescott, D. J., 1976, Differentiation of insect sensory neurons in the absence of their normal synaptic targets, Dev. Biol. 52:121–127.PubMedCrossRefGoogle Scholar
  53. Sanes, J. R., Prescott, D. J., and Hildebrand, J. G., 1977, Cholinergic neurochemical development of normal and deafferented antennal lobes in the brain of the moth, Manduca sexta, Brain Res. 119:389–402.CrossRefGoogle Scholar
  54. Schneider, I., 1964, Differentiation of larval Drosophila eye-antennal discs in vitro, J. Exp. Zool. 156:91–104.CrossRefGoogle Scholar
  55. Schneider, I., 1966, Histology of larval eye-antennal discs and cephalic ganglia of Drosophila cultured in vitro, J. Embryol. Exp. Morphol. 15:271–279.PubMedGoogle Scholar
  56. Schneiderman, A. M., Matsumoto, S. G., and Hildebrand, J. G., 1982, Trans-sexually grafted antennae influence development of sexually dimorphic neurones in moth brain, Nature (London) 298:844–846.CrossRefGoogle Scholar
  57. Schneiderman, A. M., Hildebrand, J. G., and Jacobs, J. J., 1983, Computer-aided morphometry of developing and mature antennal lobes in the moth Manduca sexta, Soc. Neurosci. Abstr. 9:834.Google Scholar
  58. Schweitzer, E. S., Sanes, J. R., and Hildebrand, J. G., 1976, Ontogeny of electroantennogram responses in the moth Manduca sexta, J. Insect Physiol. 22:955–960.PubMedCrossRefGoogle Scholar
  59. Starratt, A. N., Dahm, K. H., Allen, N., Hildebrand, J. G., Payne, T. L., and Roller, H., 1979, Bombykal, a sex pheromone of the sphinx moth Manduca sexta, Z. Naturforsch. 34c:9–12.Google Scholar
  60. Taylor, H. M., and Truman, J. W., 1974, Metamorphosis of the abdominal ganglia of the tobacco horn-worm, Manduca sexta, J. Comp. Physiol. 90:367–388.CrossRefGoogle Scholar
  61. Tolbert, L. P., and Hildebrand, J. G., 1981, Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the moth Manduca sexta: A study using thin sections and freeze-fracture, Proc. R. Soc. (London) Ser. B. 213:279–301.CrossRefGoogle Scholar
  62. Tolbert, L. P., Matsumoto, S. G., and Hildebrand, J. G., 1983, Development of synapses in the antennal lobes of the moth Manduca sexta during metamorphosis, J. Neurosci. 3:1158–1175.PubMedGoogle Scholar
  63. Truman, J. W., and Reiss, S. E., 1976, Dendritic reorganization of an identified motoneuron during metamorphosis of the tobacco hornworm moth, Science 192:477–479.PubMedCrossRefGoogle Scholar
  64. Truman, J. W., and Schwartz, L. M., 1982, Programmed death in the nervous system of a moth, Trends Nuerosci. 5:270–273.CrossRefGoogle Scholar
  65. Truman, J. W., Taghert, P. H., Copenhaver, P. F., Tublitz, N.J., and Schwartz, L. M., 1981, Eclosion hormone may control all ecdyses in insects, Nature (London) 291:70–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • John G. Hildebrand
    • 1
  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations