Advertisement

Neural Network Analysis in the Snail Brain

  • Paul R. Benjamin
  • Christopher J. H. Elliott
  • Graham P. Ferguson

Abstract

How can we hope to use the techniques of cellular neurobiology, which have been successfully used to analyze the properties of single neurons or small networks, to eventually understand a structure such as the snail brain which contains about 25,000 neurons? Our approach has been to carry out detailed analyses of specific neural networks underlying several types of function in the brain of the pond snail, Lymnaea, while collecting less specific information on more global aspects of brain organization and the larger scale of interactions within it. The concentration of the CNS into a compact brain and the distribution of cells of the same type over several ganglia (see, for instance, the neurosecretory cells of Fig. 1A) makes such a whole brain analysis almost inevitable even for simple mapping studies, but the global aspect of organization within the snail brain is also emphasized by our analysis of two interneurons that have follower cells in at least five of the ganglia of the CNS (Fig. 1C,D). Even neural systems underlying specific behavioral acts can be widely distributed and motoneurons responsible for whole body withdrawal responses occur in all nine ganglia of the central ganglionic ring (Fig. 1B).

Keywords

Central Pattern Generator Cerebral Ganglion Slow Oscillator Pond Snail Neural Network Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin, P. R., 1983a, Electrical properties of the Dark Green Cells, neurosecretory neurones in the brain of the pond snail, Lymnaea stagnates, Comp. Biochem. Physiol. 75A:549–556.CrossRefGoogle Scholar
  2. Benjamin, P. R., 1983b, Gastropod feeding: Behavioural and neural analysis of a complex multicom-ponent system, in: Neural Control of Rhythmic Movements (A. Roberts and B. L. Roberts, eds.), Cambridge University Press, Cambridge pp. 159–193.Google Scholar
  3. Benjamin, P. R., and Rose, R. M., 1979, Central generation of bursting in the feeding system of the snail, Lymnaea stagnalis, J. Exp. Biol. 80:93–118.Google Scholar
  4. Benjamin, P. R., and Rose, R. M., 1980, Interneuronal circuitry underlying cyclical feeding in gastropod molluscs, Trends Neurosci. 3:272–274.CrossRefGoogle Scholar
  5. Benjamin, P. R., and Rose, R. M., 1984, Electrotonic coupling and afterdischarges in the Light Green Cells: A comparison with two other cerebral ganglia neurosecretory cell types in the pond snail, Lymnaea stagnalis, Comp. Biochem. Physiol. 77A:67–74.CrossRefGoogle Scholar
  6. Benjamin, P. R., and Winlow, W., 1981, The distribution of three wide-acting synaptic inputs to identified neurons in the isolated brain of Lymnaea stagnalis (L.), Comp. Biochem. Physiol. 70A:293–307.CrossRefGoogle Scholar
  7. Benjamin, P. R., Swindale, N. V., and Slade, C. T., 1976, Electrophysiology of identified neurosecretory neurones in the pond snail, Lymnaea stagnalis L., in: Neurobiology of Invertebrates, III Gastropoda Brain (J. Sálanki, ed.), Akadémiai Kiadó, Budapest, pp. 123–138.Google Scholar
  8. Benjamin, P. R., Rose, R. M., Slade, C. T., and Lacy, M. G., 1979, Morphology of identified neurones in the buccal ganglia of Lymnaea stagnalis, J. Exp. Biol. 80:119–135.Google Scholar
  9. Benjamin, P. R., Slade, C. T., and Soffe, S. R., 1980, The morphology of neurosecretory nerones in the pond snail, Lymnaea stagnalis, by the injection of Procion Yellow and Horseradish Peroxidase, Philos. Trans. R. Soc. London Ser. B 290:449–478.CrossRefGoogle Scholar
  10. Benjamin, P. R., McCrohan, C. R., and Rose, R. M., 1981, Higher order interneurones which initiate and modulate feeding in the pond snail, Lymnaea stagnalis, in: Invertebrate Neurobiology: Mechanisms of Integration (J. Sálanki, ed.), Pergamon Press, Oxford, pp. 171–200.Google Scholar
  11. Berry, M. S., and Cottrell, G. A., 1979, Ionic basis of different synaptic potentials mediated by an identified dopamine-containing neuron in Planorbis, Proc. Soc. (London) Ser. B. 203:427–444.CrossRefGoogle Scholar
  12. Boer, H. H., Schot, L. P. C., Roubos, E. N., Maat, A. ter, Lodder, J. C, Reichelt, D., and Swabb, D. F., 1979, ACTH-like immunoreactivity in two electrotonically coupled giant neurons in the pond snail Lymnaea stagnalis, Cell Tissue Res. 203:231–240.Google Scholar
  13. Dorsett, D. A., and Sigger, J. N., 1981, Sensory fields and properties of the oesophageal propriocepters in the mollusc, Philine, J. Exp. Biol. 94:77–93.Google Scholar
  14. Geraerts, W. P. M., 1976, Control of growth by the neurosecretory hormone of the Light Green Cells in the freshwater snail Lymnaea stagnalis, Gen. Comp. Endocrinol. 29:61–71.CrossRefGoogle Scholar
  15. Geraerts, W. P. M., Leeuwen, J. P. Th. M. van, Nuyt, K., and With, N. D. de, 1981, Cardioactive peptides of the CNS of the pulmonate snail Lymnaea stagnalis, Experientia 27:1168–1169.CrossRefGoogle Scholar
  16. Kater, S. B., 1974, Feeding in Helisoma trivolvis: The morphological and physiological basis of a fixed action pattern. Am. Zool. 14:1017–1036.Google Scholar
  17. Kling, U., and Székely, G., 1968, Simulation of rhythmic nervous activities, I. Function of networks with cyclic inhibitions, Kybernetik 5:89–103.PubMedCrossRefGoogle Scholar
  18. Kupfermann, I., and Weiss, K. R., 1978, The command neuron concept, Behav. Brain Sci. 1:3–39.CrossRefGoogle Scholar
  19. Lever, A. J., Bruins, H. J., Geigenhuis, C, Everts, W. M., and Fokkema, B. S., 1978, The neural organization of the tentacle contraction reflex of the pond snail Lymnaea stagnalis (L.), Proc. Kon. Akad. Wetensch. Ser. C 81:265–278.Google Scholar
  20. McClennan, A. D., 1982, Movements and motor patterns of the buccal mass of Pleurobranchaea during feeding, regurgitation and rejection, J. Exp. Biol. 98:195–211.Google Scholar
  21. McCrohan, C. R., and Benjamin, P. R., 1980a, Patterns of activity and axonal projections of the cerebral giant cells of the snail, Lymnaea stagnalis, J. Exp. Biol. 85:149–168.Google Scholar
  22. McCrohan, C. R., and Benjamin, P. R., 1980b, Synaptic relationships of the cerebral giant cells with motoneurones in the feeding system of Lymnaea stagnalis, J. Exp. Biol. 85:169–186.Google Scholar
  23. Merickel, M., and Gray, R., 1980, Investigation of burst generation by the electrically coupled cyberchron network in the snail Helisoma using a single-electrode voltage clamp, J. Neurobiol. 11:73–102.PubMedCrossRefGoogle Scholar
  24. Rose, R. M., and Benjamin, P. R., 1979, The relationship of the central motor pattern to the feeding cycle of Lymnaea stagnalis, J. Exp. Biol. 80:137–163.PubMedGoogle Scholar
  25. Rose, R. M., and Benjamin, P. R., 1981a, Interneuronal control of feeding in the pond snail Lymnaea stagnalis. I. Initiation of feeding cycles by a single buccal interneurone, J. Exp. Biol. 92:187–201.Google Scholar
  26. Rose, R. M., and Benjamin, P. R., 1981b, Interneuronal control of feeding in the pond snail Lymnaea stagnalis. II. The interneuronal mechanisms generating feeding cycles, J. Exp. Biol. 92:203–228.Google Scholar
  27. Schot, L. P. C, and Boer, H. H., 1982, Immunocytochemical demonstration of peptidergic cells in the pond snail Lymnaea stagnalis with an antiserum to the molluscan cardioactive tetrapeptide FMRF-amide, Cell Tissue Res. 225:347–354.PubMedCrossRefGoogle Scholar
  28. Schot, L. P. C., Boer, H. H., Swaab, D. F., and Noorden, S. van, 1981, Immunocytochemical demonstration of peptidergic neurons in the central nervous system of the pond snail Lymnaea stagnalis with antisera raised to biologically active peptides of vertebrates, Cell Tissue Res. 216:273–291.PubMedCrossRefGoogle Scholar
  29. Slade, C. T., Mills, J., and Winlow, W., 1981, The neuronal organization of the paired pedal ganglia of Lymnaea stagnalis (L.), Comp. Biochem. Physiol. 69A:789–803.CrossRefGoogle Scholar
  30. Soffe, S. R., and Benjamin, P. R., 1980, Morphology of two electrotonically coupled giant neurosecretory neurons in the snail, Lymnaea stagnalis. Comp. Biochem. Physiol. 67A:35–46.CrossRefGoogle Scholar
  31. Soffe, S. R., Benjamin, P. R., and Slade, C. T., 1978, Effects of environmental osmolality on the blood composition and light microscope appearance of neurosecretory neurones in the snail Lymnaea stagnalis, Comp. Biochem. Physiol. 61A:557–584.CrossRefGoogle Scholar
  32. Spray, D. C, Bennett, M. V. L., and Spira, M. E., 1980, Synaptic connections of buccal mechanosensory neurons in the opisthobranch mollusc, Navanax inermis, Brain Res. 182:271–286.CrossRefGoogle Scholar
  33. Stoll, C. J., 1976, Extraocular photoreception in Lymnaea stagnalis L., in: Neurobiology of Invertebrates: Gastropoda Brain (J. Salanki, ed.), Akadémiai Kiadó, Budapest, pp. 487–495.Google Scholar
  34. Swindale, N. V., and Benjamin, P. R., 1976, The anatomy of neurosecretory neurones in the pond snail Lymnaea stagnalis (L.), Philos. Trans. R. Soc. London (Ser. B) 274:169–202.CrossRefGoogle Scholar
  35. Wendelaar Bonga, S. E., 1970, Ultrastructure and histochemistry of neurosecretory cells and neuro-haemal areas in the pond snail Lymnaea stagnalis (L.), Z. Zellforsch. 108:190–224.PubMedCrossRefGoogle Scholar
  36. Wendelaar Bonga, S. E., 1972, Neuroendocrine involvement in osmoregulation in a freshwater mollusc, Lymnaea stagnalis Gen. Comp. Endocrinol. (Suppl.) 3:308–316.CrossRefGoogle Scholar
  37. Winlow, W., Haydon, P. G., and Benjamin, P. R., 1981, Multiple postsynaptic actions of the giant dopa-mine-containing neurone R.Re.D.l of Lymnaea stagnalis (L.), J. Exp. Biol. 94:137–148.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Paul R. Benjamin
    • 1
  • Christopher J. H. Elliott
    • 1
  • Graham P. Ferguson
    • 1
  1. 1.M.R.C. Neurophysiology Research Group, School of BiologyUniversity of SussexBrighton, SussexUK

Personalised recommendations