Extrinsic Inputs and Flexibility in the Motor Output of the Lobster Pyloric Neural Network

  • Maurice Moulins
  • Frédéric Nagy


In recent years, our understanding of motor behavior in terms of single-cell activity has been primarily concerned with determining the functional structure of central pattern generators (CPGs) (Selverston, 1980). To analyze such a structure, i.e., to identify the neuronal components and determine the mutual interactions between these components, “naked” CPGs (i.e., completely deafferented CPGs) must be used. Nevertheless, the patterned activity that can be recorded from such an isolated CPG is relatively stereotyped, and until now, little was known about the mechanisms by which such a network could exhibit flexibility in its output in the intact animal. The goal of this chapter is to show how extrinsic inputs to a well-known CPG (the pyloric network of Crustacea, see Chapter 3, this volume) can continuously control the expression of the intrinsic properties of the neurons and thereby continuously “rewire” the network.


Central Pattern Generator Pacemaker Neuron Pacemaker Potential Pyloric Dilator Stomatogastric Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. W., and Barker, D. L., 1981, Synaptic mechanisms that generate network oscillations in the absence of discrete postsynaptic potentials, J. Exp. Zool. 216:187–191.PubMedCrossRefGoogle Scholar
  2. Barker, J. L., and Gainer, H., 1974, Peptide regulation of bursting pacemaker activity in a molluscan neurosecretory cell, Science 184:1371–1373.PubMedCrossRefGoogle Scholar
  3. Barker, J. L., Ifshin, M., and Gainer, H., 1975, Studies on bursting pacemaker potential activity in molluscan neurons. III. Effects of hormones, Brain Res. 84:501–513.PubMedCrossRefGoogle Scholar
  4. Cooke, I. M., and Hartline, D. K., 1975, Neurohormonal alterations of integrative properties of the cardiac ganglion of the lobster Homaros americanus, J. Exp. Biol. 63:33–52.Google Scholar
  5. Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals, Science 210:492–498.PubMedCrossRefGoogle Scholar
  6. Dickinson, P. S., and Nagy F., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones, J. Exp. Biol. 105:59–82.PubMedGoogle Scholar
  7. Eisen, J. S., and Marder, E., 1984, A mechanism for the production of phase shifts in a pattern generator, J. Neurophysiol. 51:1375–1393.PubMedGoogle Scholar
  8. Gagerman, E., Idahl, L. A., Meissner, H. P., and Taljedal, I. B., 1978, Insulin release, cGmP, cAMP and membrane potential in acetylcholine stimulated islets, Am. J. Physiol. 235:493–500.Google Scholar
  9. Giles, W., and Noble, S. J., 1976, Changes in membrane currents in bullfrog atrium produced by acetylcholine, J. Physiol. (London) 276:103–123.Google Scholar
  10. Gola, M., and Selverston, A. I., 1981, Ionic requirements for bursting activity in lobster stomatogastric neurones, J. Comp. Physiol. 145:191–207.CrossRefGoogle Scholar
  11. Grillner, S., 1975, Locomotion in vertebrates, central mechanisms and reflex interaction, Physiol. Rev. 55:247–304.PubMedCrossRefGoogle Scholar
  12. Grillner, S., 1977, On the neural control of movement. A comparison of different basic rhythmic behaviors, in: Function and Formation of Neural Systems (G. S. Stent, ed.), Dahlem Konferenzen, Berlin, pp. 197–224.Google Scholar
  13. Ifshin, M., Gainer, H., and Barker, J. L., 1975, Peptide factor extracted from molluscan ganglia that modulates bursting pacemaker activity, Nature (London) 254:72–73.CrossRefGoogle Scholar
  14. Ikeda, K., and Wiersma, C. A. G., 1964, Autogenic rhythmicity in the abdominal ganglia of the crayfish: The control of swimmeret movements, Comp. Biochem. Physiol. 12:107–115.PubMedCrossRefGoogle Scholar
  15. Kits, K. S., and Bos, N. P. A., 1981, Pacemaking mechanisms of the after discharge of the ovulation hormone-producing caudo-dorsal cells in the gastropod mollusc, Lymnaea stagnalis, J. Neurobiol. 12:425–439.CrossRefGoogle Scholar
  16. Kristan, W. B., and Guthrie, P. B., 1977, Acquisition of swimming behavior in chronically isolated single segment of the leech, Brain Res. 131:191–195.PubMedCrossRefGoogle Scholar
  17. Lemos, J. R., and Berlind, A., 1981, Cyclic adenosine monophosphate mediation of peptide neurohormone effects on the lobster cardiac ganglion, J. Exp. Biol. 90:307–326.Google Scholar
  18. Marder, E., 1984, Mechanisms underlying neurotransmitter modulation of a neuronal circuit, Trends Neurosci. 7:48–53.CrossRefGoogle Scholar
  19. Marder, E., and Eisen, J. S., 1984, Electrically coupled pacemaker neurons respond differently to the same physiological inputs and neurotransmitters, J. Neurophysiol. 51:1362–1374.PubMedGoogle Scholar
  20. Mayeri, E., Brownel, P., Branton, W. D., and Simon, S. B., 1979, Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia, I. Effects on bursting pacemaker neurons, J. Neurophysiol. 42:1165–1184.PubMedGoogle Scholar
  21. Maynard, D. M., 1972, Simpler networks, Ann. NY. Acad. Sci. 193:59–72.PubMedCrossRefGoogle Scholar
  22. Miller, J. P., and Selverston, A. I., 1982, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, II. Oscillatory properties of pyloric neurons, J. Neurophysiol. 48:1378–1391.PubMedGoogle Scholar
  23. Moulins, M., and Cournil, I., 1982, All-or-none control of the bursting properties of the pacemaker neurons of the lobster pyloric pattern generator, J. Neurobiol. 13:447–458.PubMedCrossRefGoogle Scholar
  24. Moulins, M., and Nagy, F., 1983, Control of integration by exogenous inputs in crustacean neuronal circuits, J. Physiol (Paris) 78:755–764.Google Scholar
  25. Nagy, F., 1981, Etude de l’expression d’activités motrices rythmiques organisées par des générateurs paucineuroniques du système nerveux stomatogastrique des Crustacés décapodes. Flexibilité intrinsèque aux réseaux moteurs; contrôle par les centres supérieurs; contrôle proprioceptif, Thèse d’Etat Université de Bordeaux I.Google Scholar
  26. Nagy, F., and Dickinson, P. S., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea, I. Modulation of the pyloric motor output, J. Exp. Biol. 105:33–58.PubMedGoogle Scholar
  27. Nagy, F., Dickinson, P. S., and Moulins, M., 1981, Modulatory effects of a single neuron on the activity of the pyloric pattern generator in Crustacea, Neurosci. Lett. 23:167–173.PubMedCrossRefGoogle Scholar
  28. Nagy, F., Benson, J. A., and Moulins, M., 1984, Cholinergic activation of burst generating oscillations mediated by opening of Ca++ channels in lobster pyloric neurons, Soc. Neurosa. Abstr. 10:148.Google Scholar
  29. Parnas, I., Armstrong, D., and Strumwasser, F., 1974, Prolonged excitatory and inhibitory synaptic modulation of a bursting pacemaker neuron, J. Neurophysiol. 37:594–608.PubMedGoogle Scholar
  30. Raper, J. A., 1979, Nonimpulse mediated synaptic transmission during the generation of a cyclic motor program, Science 205:304–306.PubMedCrossRefGoogle Scholar
  31. Reuter, H., 1974, Localization of beta-adrenergie receptors and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle, J. Physiol. (London) 242:429–451.Google Scholar
  32. Rezer, E., and Moulins, M., 1983, Expression of the crustacean pyloric pattern generator in the intact animal, J. Comp. Physiol. 153:17–28.CrossRefGoogle Scholar
  33. Robertson, R. M., and Moulins, M., 1981, Oscillatory command input to the motor pattern generators of the crustacean stomatogastric ganglion, I. The pyloric rhythm, J. Comp. Physiol. 143:453–463.CrossRefGoogle Scholar
  34. Russell, D. F., and Hartline, D. K., 1978, Bursting neural networks: A reexamination, Science 200:453–456.PubMedCrossRefGoogle Scholar
  35. Selverston, A. I., 1980, Are central pattern generators understandable, Behav. Brain Sci. 3:535–571.CrossRefGoogle Scholar
  36. Selverston, A. I., and Miller, J. P., 1980, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, I. Pyloric system, J. Neurophysiol. 44:1102–1121.PubMedGoogle Scholar
  37. Selverston, A. I., Russell, D. F., Miller, J. P., and King, D. G., 1976, The stomatogastric nervous system: Structure and function of a small neural network, Prog. Neurobiol. 7:215–290.PubMedCrossRefGoogle Scholar
  38. Stein, P. S. G., 1977, Application of the mathematics of coupled oscillator systems to the analysis of the neural control of locomotion, Fed. Proc. 36:2056–2059.PubMedGoogle Scholar
  39. Stein, P. S. G., 1978, Motor systems with specific reference to the control of locomotion, Annu. Rev. Neurosci. 1:61–81.PubMedCrossRefGoogle Scholar
  40. Ten Eick, R., Nawrath, H., McDonald, T. F., and Trautwein, W., 1976, On the mechanism of the negative inotropic effect of acetylcholine, Pflug. Arch. Eur. J. Physiol. 361:207–213.CrossRefGoogle Scholar
  41. Watanabe, A., Obara, S., and Akiyama, T., 1969, Acceleratory synapses on pacemaker neurons in the heart ganglion of a stomatopod, Squilla oratoria, J. Gen. Physiol. 54:212–231.CrossRefGoogle Scholar
  42. Wilson, D. M., and Wyman, R. J., 1965, Motor output patterns during random and rhythmic stimulations of locust thoracic ganglia, Biophysiol. J. 5:121–143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Maurice Moulins
    • 1
    • 2
  • Frédéric Nagy
    • 1
    • 2
  1. 1.Laboratory of Comparative Neurobiology, CNRSArcachonFrance
  2. 2.University of Bordeaux IArcachonFrance

Personalised recommendations