Advertisement

Neural Networks Controlling Locomotion in Locusts

  • R. Meldrum Robertson
  • Keir G. Pearson

Abstract

Recently there has been considerable increase in interest in the organization and functioning of nerve cells in the central nervous system of insects. It is now clear that the neural control of many simple behaviors in these animals can be analyzed using modern intracellular recording and staining techniques, and that insects offer attractive preparations for determining the events associated with neuronal development (Chapter 9, this volume). In some large orthopterans (locusts, crickets) and cockroaches, substantial progress has now been made toward understanding the nervous control of flying, jumping, respiration, walking, and predator avoidance (Robertson and Pearson, 1982, 1983; Pearson et al., 1980; Burrows, 1982; Pearson, 1976; Westin and Ritzmann, 1982) and toward elucidating integrative events in auditory and tactile sensory systems (Wohlers and Huber, 1982; Romer et al., 1981; Siegler and Burrows, 1983). Moreover, these animals have provided useful preparations for the analysis of graded transmitter release (Burrows, 1981), the modulatory influences of biogenic amines (Evans and O’Shea, 1978), and the physiological action of neuropeptides (Adams and O’Shea, 1983).

Keywords

Thoracic Ganglion Insect Wing Full Flexion Flight System Wingbeat Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. E., and O’Shea, M., 1983, Peptide cotransmitter at a neuromuscular junction, Science 221:286–289.PubMedCrossRefGoogle Scholar
  2. Bacon, J. P., 1980, An homologous interneurone in a locust, a cricket and mantid, Verh. Dtsch. Zool. Ges. 73:300.Google Scholar
  3. Bacon, J. P., and Möhl, B., 1983, The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. I. Its activity in straight flight, J. Comp. Physiol. 150:439–452.CrossRefGoogle Scholar
  4. Bullock, T. H., 1980, Reassessment of neural connectivity and its specification, in: Information Processing in the Nervous System (H. M. Pinsker and W. D. Willis, Jr., eds.), Raven Press, New York, pp. 199–220.Google Scholar
  5. Burrows, M., 1981, Local interneurones in insects, in: Neurones without Impulses (A. Roberts and B. M. H. Bush, eds.), Cambridge University Press, Cambridge, pp. 199–121.Google Scholar
  6. Burrows, M., 1982, Interneurones co-ordinating the ventilatory movements of the thoracic spiracles in the locust, J. Exp. Biol 97:385–400.Google Scholar
  7. Dickinson, P., 1980, Neuronal control of gills in diverse Aplysia species: Conservative evolution, J. Comp. Physiol. 139:17–23.CrossRefGoogle Scholar
  8. Evans, P. D., and O’Shea, M., 1978, The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust, J. Exp. Biol. 73:235–260.PubMedGoogle Scholar
  9. Getting, P. A., 1983, Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction, J. Neurophysiol. 49:1017–1035.PubMedGoogle Scholar
  10. Hedwig, B., and Pearson, K. G., 1984, Patterns of synaptic input to identified flight motoneurons in the locust, J. Comp. Physiol. 154:745–760.CrossRefGoogle Scholar
  11. Heitler, W. J., 1974, The locust jump. Specializations of the metathoracic femoral-tibial joint, J. Comp. Physiol. 89:93–104.CrossRefGoogle Scholar
  12. Heitler, W. J., and Burrows, M., 1977a, The locust jump. I. The motor programme, J. Exp. Biol. 66:203–219.PubMedGoogle Scholar
  13. Heitler, W. J., and Burrows, M., 1977b, The locust jump. II. Neural circuits of the motor programme, J. Exp. Biol. 66:221–241.PubMedGoogle Scholar
  14. Horsmann, U., 1981, Flugrelevante Afferenzen und ihre Verarbeitung bei Wanderheuschrecke (locusta migratoria L.), Diplomarbeit, Köln.Google Scholar
  15. Horsmann, U., Heinzel, H. G., and Wendler, G., 1983, The phasic influence of self-generated air current modulations on the locust flight motor, J. Comp. Physiol. 150:427–438.CrossRefGoogle Scholar
  16. Hoyle, G. (ed.), 1977, Identified Neurons and Behavior of Arthropods, Plenum Press, New York.Google Scholar
  17. King, D. G., and Valentino, K. L., 1983, On neuronal homology: A comparison of similar axons in Musca, Sacrophaga and Drosophila (Diptera: Schizophora), J. Comp. Neurol. 219:1–9.PubMedCrossRefGoogle Scholar
  18. Kukalová-Peck, J., 1983, Origin of the insect wing and wing articulation from the arthropodan leg, Can. J.Zool. 61:1618–1669.CrossRefGoogle Scholar
  19. Pearson, K. G., 1976, The control of walking, Sci Am. 235(6):72–86.PubMedCrossRefGoogle Scholar
  20. Pearson, K. G., 1983, Neural circuits for jumping in the locusts, J. Physiol. (Paris) 78:765–771.Google Scholar
  21. Pearson, K. G., and Robertson, R. M., 1981, Interneurons coactivating hindleg flexor and extensor motoneurons in the locust, J. Comp. Physiol. 144:391–400.CrossRefGoogle Scholar
  22. Pearson, K. G., Heitler, W. J., and Steeves, J. D., 1980, Triggering of locust jump by multimodal inhibitory interneurons, J. Neurophysiol. 43:257–278.PubMedGoogle Scholar
  23. Pearson, K. G., Reye, D. N., and Robertson, R. M., 1983, Phase-dependent influences of wing stretch receptors on flight rhythm in the locust, J. Neurophysiol. 49:1168–1181.PubMedGoogle Scholar
  24. Robertson, R. M., and Pearson, K. G., 1982, A preparation for the intracellular analysis of neuronal activity during flight in the locust, J. Comp. Physiol. 146:311–320.CrossRefGoogle Scholar
  25. Robertson, R. M., and Pearson, K. G., 1983, Interneurons in the flight system of the locust: Distribution, connections and resetting properties, J. Comp. Neurol. 215:33–50.PubMedCrossRefGoogle Scholar
  26. Robertson, R. M., and Pearson, K. G., 1984, Interneuronal organization in the flight system of the locust, J. Insect Physiol. 30:95–101.CrossRefGoogle Scholar
  27. Robertson, R. M., and Pearson, K. G., 1985, Neural circuits in the flight system of the locust. J. Neurophysiol. 53:110–128.PubMedGoogle Scholar
  28. Robertson, R. M., Pearson, K. G., and Reichert, H., 1982, Flight interneurons in the locust and the origin of insect wings, Science 217:177–179.PubMedCrossRefGoogle Scholar
  29. Romer, H., Rheinlaender, J., and Dronse, R., 1981, Intracellular studies on auditory processing in the metathoracic ganglion of the locust, J. Comp. Physiol. 144:305–312.CrossRefGoogle Scholar
  30. Siegler, M. V. S., and Burrows, M., 1983, Spiking local interneurons as primary integrators of mechanosensory information in the locust, J. Neurophysiol. 50:1281–1295.PubMedGoogle Scholar
  31. Steeves, J. D., and Pearson, K. G., 1982, Proprioceptive gating of inhibitory pathways to hindwing flexor motoneurons in the locust, J. Comp. Physiol. 146:507–515.CrossRefGoogle Scholar
  32. Weis-Fogh, T., 1956, Biology and physics of locust flight. IV. Notes on sensory mechanisms in locust flight. Philos. Trans. R. Soc. London Ser. B 239:553–584.CrossRefGoogle Scholar
  33. Wendler, G., 1974, The influence of proprioceptive feedback on locust flight coordination, J. Comp. Physiol. 88:173–200.CrossRefGoogle Scholar
  34. Wendler, G., 1983a, The interaction of peripheral and central components in insect locomotion, in: Neuroethology and Behavioral Physiology (F. Huber and H. Markl, eds.), Springer-Verlag, Berlin, pp. 42–53.CrossRefGoogle Scholar
  35. Wendler, G., 1983b, The locust flight system: Functional aspects of sensory input and methods of investigation, in: BIONA — Report 2 (W. Nachtigall, ed.), Gustav Fischer, Stuttgart, pp. 113–125.Google Scholar
  36. Westin, J., and Ritzmann, R. E., 1982, The effect of single giant interneuron lesions on wind evoked motor responses in the cockroach, Periplaneta americana, J. Neurobiol. 13:127–140.CrossRefGoogle Scholar
  37. Wilson, D. M., 1961, The central nervous control of locust flight, J. Exp. Biol. 38:471–490.Google Scholar
  38. Wilson, D. M., and Gettrup, E., 1963, A stretch reflex controlling wingbeat frequency in grasshoppers, J. Exp. Biol. 40:171–185.Google Scholar
  39. Wilson, D. M., and Weis-Fogh, T., 1962, Patterned activity of co-ordinated motor units studied in flying locusts, J. Exp. Biol. 40:643–667.Google Scholar
  40. Wilson, D. M., and Wyman, R. J., 1965, Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia, Biophys. J. 5:121–143.PubMedCrossRefGoogle Scholar
  41. Wohlers, D. W., and Huber, F., 1982, Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L, J. Comp. Physiol. 146:161–174.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • R. Meldrum Robertson
    • 1
  • Keir G. Pearson
    • 2
  1. 1.Department of BiologyMcGill UniversityMontrealCanada
  2. 2.Department of PhysiologyUniversity of AlbertaEdmontonCanada

Personalised recommendations