Advertisement

Neurosecretory Role of Crustacean Eyestalk in the Control of Neuronal Activity

  • Hugo Aréchiga
  • Ubaldo García
  • Leonardo Rodríguez-Sosa

Abstract

From early histological work with methylene blue staining, the existence of neurosecretory cells was postulated in different regions of the eyestalk. Histochemical work rendered similar results (see Gabe, 1966). The most conspicuous system is that composed by the sinus gland, a neurohemal organ located in the distal part of the eyestalk, between the medulla externa and the medulla interna in many species (Fig. 1A). Its basic structure, as seen in Fig. 1B, is that of a bunch of neurosecretory endings, which are the dilated terminals of axons coming from other regions of the eyestalk, to end in apposition to a blood sinus. From morphological and physiological work, the notion was evolved of the sinus gland as the common end of secretory neurons all over the eyestalk and even of incoming fibers from other central ganglia. However, more recently, from experiments with cobalt backfills, a more restricted origin has been advocated, limiting the source of neurosecretory fibers to the sinus gland, to a group of 100–150 cell bodies clustered in the medulla terminalis and known since long ago as the X organ, or Hanstrom’s organ (Andrew et al., 1978; Jaros, 1978). Only a small number of cells outside this cluster were backfilled from the sinus gland.

Keywords

Neurosecretory Cell Stretch Receptor Abdominal Ganglion Organ Neuron Sinus Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot, N. J., Moreton, R. B., and Pichon, Y., 1975, Electrophysiological analysis of potassium and sodium movements in crustacean nervous system, J. Exp. Biol. 63:85–115.Google Scholar
  2. Andrew, R. D., and Saleuddin, A. S. M., 1978, Structure and innervation of a crustacean neurosecretory cell, Can. J. Zool. 56:423–430.CrossRefGoogle Scholar
  3. Andrew, R. D., Orchard, I., and Saleuddin, A. S. M., 1978, Structural reevaluation of the neurosecretory system in the crayfish eyestalk, Cell Tissue Res. 190:235–246.PubMedCrossRefGoogle Scholar
  4. Arámburo, C., 1983, Correlación entre actividad neurodepresora y diferentes entidades químicas presentes en el tallo ocular de Penaeus vannamei (Boone), Ph. D. Thesis, Universidad Nacional Autónoma de México.Google Scholar
  5. Aréchiga, H., 1977, Modulation of visual input in the crayfish, in: Identified Neurones and Behavior of Arthropods (G. Hoyle, ed.), Plenum Press, New York, pp, 387–403.CrossRefGoogle Scholar
  6. Aréchiga, H., 1979, Circadian modulation of behavior in crustaceans, Neurosci. Res. Prog. Bull. 17:672–679.Google Scholar
  7. Aréchiga, H., and Cerbón, J., 1981, The influence of temperature and deuterium oxide on the spontaneous activity of crayfish motoneurons, Comp. Biochem. Physiol. 69A:631–636.CrossRefGoogle Scholar
  8. Aréchiga, H., and Huberman, A., 1980a, Peptide modulation of neuronal activity in crustaceans, in: The Role of Peptides in Neuronal Function, Marcel Dekker, Inc. New York, pp. 317–349.Google Scholar
  9. Aréchiga, H., and Huberman, A., 1980b, Hormonal modulation of circadian rhythmicity in crustaceans, in: Comparative Aspects of Neuroendocrine Control of Behavior (C. Valverde and H. Aréchiga, eds.), S. Karger Basel, pp. 16–34.Google Scholar
  10. Aréchiga, H., and Huberman, A., 1981, A neuropeptide inducing enhancement of neuronal activity in crayfish. Soc. Neurosci. Abstr. 8:103.Google Scholar
  11. Aréchiga, H., and Mena, F., 1975, Circadian variations of hormonal content in the nervous system of the crayfish, Comp. Biochem. Physiol. 52A:581–584.CrossRefGoogle Scholar
  12. Aréchiga, H., and Naylor, E., 1976, Endogenous factors in the control of rhythmicity in decapod crustaceans, in: Biological Rhythms in the Marine Environment., (P. J. De Coursey, ed.), University of South Carolina Press, pp. 1–16.Google Scholar
  13. Aréchiga, H., Huberman, A., and Naylor, E., 1974, Hormonal modulation of circadian neural activity in Carcinus maenas (L.), Proc. R. Soc. London B 187:299–313.CrossRefGoogle Scholar
  14. Aréchiga, H., Huberman, A., and Martínez-Palomo, A., 1977, Release of a neuro-depressing hormone from the crustacean sinus gland, Brain Res. 128:93–108.PubMedCrossRefGoogle Scholar
  15. Aréchiga, H., Cabrera-Peralta, C., and Huberman, A., 1979a, Functional characterization of the neuro-depressing hormone in the crayfish, J. Neurobiol. 10:409–422.PubMedCrossRefGoogle Scholar
  16. Aréchiga, H., Williams, J. A., Pullin, R. S. V., and Naylor, E., 1979b, Cross sensitivity to neurodepressing hormone in two different groups of crustaceans, Gen. Comp. Endocrinol. 37:350–357.PubMedCrossRefGoogle Scholar
  17. Aréchiga, H., Atkinson, R.J. A., and Williams, J. A., 1980, Neurohumoral basis of circadian rhythmicity in Nephrops norvegicus (L), Mar. Behav. Physiol. 7:185–197.CrossRefGoogle Scholar
  18. Aréchiga, H., Chávez, B., and Glantz, R. M., 1985a, Dye coupling and gap junctions between crustacean neurosecretory cells, Brain Res. 326:183–187.PubMedCrossRefGoogle Scholar
  19. Aréchiga, H., Cortés, J. L., García, U., and Rodríguez-Sosa, L., 1985b, Neuroendocrine correlates of circadian rhythmicity in crustaceans, Am. Zool. 25: (in press).Google Scholar
  20. Aréchiga, H., Flores-López, J., and García, U., 1985c, Control of biosynthesis and release of the crustacean neurodepressing hormone, in: Comparative Endocrinology Symposium (B. Lofts and D. Chan, eds.) (in press).Google Scholar
  21. Bauchau, A. G., and Mengeot, J. C., 1966, Sérotonine et glycémie chez les crustacés, Experientia 22:238.PubMedCrossRefGoogle Scholar
  22. Bliss, D. E., 1962, Neuroendocrine control of locomotor activity in the land crab Gecarcinus lateralis, in: Memoirs of the Society of Endocrinologists, Vol. 12, Neurosecretion H. Heller and R. B. Clark (eds.), New York Academic Press, New York, pp. 391–408.Google Scholar
  23. Bunt, A. H., and Ashby, E. A., 1968, Ultrastructural changes in the crayfish sinus gland following electrical stimulation, Gen. Comp. Endocrinol. 10:376–382.CrossRefGoogle Scholar
  24. Cooke, I. M., 1977, Electrical activity of neurosecretory terminals and control of peptide hormone release, in: Peptides in Neurobiology (H. Gainer, Ed.), Plenum Press, New York, pp. 345–374.CrossRefGoogle Scholar
  25. Cooke, I. M., Haylett, B. A., and Weatherby, T. M., 1977, Electrically elicited neurosecretory and electrical responses of the isolated crab sinus gland in normal and reduced calcium salines, J. Exp. Biol. 70:125–149.Google Scholar
  26. Craelius, W., and Fricke, R. A., 1981, Release of 3H-gamma-aminobutyric acid (GABA) by inhibitory neurons of the crayfish, J. Neurobiol. 12:249–258.PubMedCrossRefGoogle Scholar
  27. Evans, P. D., Kravitz, E. A., and Talamo, B. R. 1976, Octopamine release at two points along lobster nerve trunks, J. Physiol. (London) 262:71–89.Google Scholar
  28. Fernlund, P., 1974, Structure of the red-pigment concentrating hormone of the shrimp Pandalus borealis, Biochem. Biophys. Acta 371:304–316.CrossRefGoogle Scholar
  29. Fernlund, P., 1976, Structure of a light-adapting hormone from the shrimp Pandalus borealis, Biochim. Biophys. Acta 439:17–25.CrossRefGoogle Scholar
  30. Fingerman, M., Hanumante, M., and Vacca, I., 1983, Enkephalin-like and substance P-like immuno-reactivity in the eyestalk neuroendocrine complex of the fiddler crab, Uca pugilator, Soc. Neurosci. Abstr. 9:439.Google Scholar
  31. Fingerman, M., Hanumante, M. M., and Fingerman, S. W., 1985, The role of neurotransmitter substances in the release of chromatophorotropic hormones in crustaceans, in: Comparative Endocrinology Symposium (B. Lofts, ed.) (in press).Google Scholar
  32. Fleischer, A. G., 1981, The effect of eyestalk hormones on the gastric mill in the intact lobster Panulirus interruptus, J. Comp. Physiol. 141:363–368.CrossRefGoogle Scholar
  33. Gabe, M., 1966, Neurosecretion, Pergamon Press, New York.Google Scholar
  34. Gainer, H., Loh, Y. P., and Neale, E. A., 1982, The organization of posttranslational precursor processing in peptidergic neurosecretory cells, in: Proteins of the Nervous System: Structure and Function B. Haber, J. R. Pérez-Polo, and J. D. Coulter, eds.), Alan Liss, Inc., New York, pp. 131–145.Google Scholar
  35. Glantz, R. M., Kirk, M. D., and Aréchiga, H., 1983, Light input to crustacean neurosecretory cells, Brain Res. 265:307–311.PubMedCrossRefGoogle Scholar
  36. Huberman, A., Aréchiga, H., Cimet, A., De La Rosa, J., and Arámburo, C., 1979, Isolation and purification of a neurodepressing hormone from the eyestalk of Procambarus bouvieri (Ortmann), Eur. J. Biochem. 99:203–208.PubMedCrossRefGoogle Scholar
  37. Iwasaki, S., and Satow, Y., 1971, Sodium- and calcium-dependent spike potentials in the secretory neuron soma of the X-organ of the crayfish, J. Gen Physiol. 57:216–238.PubMedCrossRefGoogle Scholar
  38. Iwasaki, S., and Satow, Y., 1973, Electrical characteristics of the membrane in neurosecretory neurons, in: Neuroendocrine Control (K. Yagi and S. Yoshida, eds.), Wiley, New York, pp. 85–109.Google Scholar
  39. Jaros, P. P., 1978, Tracing of neurosecretory neurons in crayfish optic ganglia by cobalt iontophoresis, Cell Tissue Res. 194:297–302.PubMedCrossRefGoogle Scholar
  40. Keller, R., and Beyer, J., 1968, Zur hyperglykämischen Wirkung von Serotonin und Augenstiel extract beim Flusskrebs Orconectes limosus, Z. Vergl. Physiol. 59:78–85.CrossRefGoogle Scholar
  41. Keller, R., and Wunderer, G., 1978, Purification and aminoacid composition of the neurosecretory hyperglycaemic hormone from the sinus gland of the shore crab Carcinus maenas, Gen. Comp. Endocrinol. 34:328–335.CrossRefGoogle Scholar
  42. Kirk, M. D., Prugh, J. I., and Glantz, R. M., 1983, A visually induced GABA mediated IPSP in a crustacean neurosecretory cell, J. Neurobiol. 14:473–480.PubMedCrossRefGoogle Scholar
  43. Kleinholz, L. H., 1975, Purified hormones from the crustacean eyestalk and their physiological specificity, Nature (London) 258:256–257.PubMedCrossRefGoogle Scholar
  44. Kristensson, K., Stromberg, E., Eloffson, R., and Olsson, Y., 1972, Distribution of protein traces in the nervous system of the crayfish (Astacus astacus Linné) following systemic and local application, J. Neurocytol. 1:35–47.PubMedCrossRefGoogle Scholar
  45. Larimer, J., and Smith, J., 1980, Circadian rhythm of retinal sensitivity in crayfish: Modulation by the cerebral and optic ganglia, J. Comp. Physiol. 136:313–326.CrossRefGoogle Scholar
  46. Mancillas, J. R., Leff, S., and Selverston, A., 1980, A neuroactive factor from the lobster sinus gland modulates the spontaneous activity of identified neural networks, Neurosci. Abstr. 6:703.Google Scholar
  47. Mancillas, J. R., McGinty, J. F., Selverston, A. I., Karten, H., and Bloom, F. E., 1981, Immunocyto-chemical localization of enkephalin and substance P in the retina and eyestalk neurones of lobster, Nature (London) 293:576–578.CrossRefGoogle Scholar
  48. Nagasaki, H., Iriki, M., and Uchizono, K., 1976, Inhibitory effect of the brain extract from sleep-deprived rats (BE-5DR) on the spontaneous discharges of crayfish abdominal ganglion, Brain Res. 109:202–205.PubMedCrossRefGoogle Scholar
  49. Naylor, E., Smith, G., and Williams, B., 1973, The effect of eyestalk extracts on the circadian locomotor rhythm of Carcinus, in: Neurobiology of Invertebrates (J. Salanki, ed.), Publishing House of the Hungarian Academy of Sciences, Budapest, pp. 423–429.Google Scholar
  50. Ochs, S., 1982, Axoplasmic Transport and Its Relation to Other Nerve Functions, J. Wiley & Sons, New York.Google Scholar
  51. Pappenheimer, J. R., Koski, G., Fencl, V., Karnovsky, M. L., and Krueger, J., 1975, Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals, J. Neurophysiol. 38:1299–1311.PubMedGoogle Scholar
  52. Quackenbush, L. S., and Fingerman, M., 1984, Regulation of neurohormone release in the fiddler crab Uca pugilator: Effects of Gamma-aminobutyric acid, Octopamine, met-enkephalin and beta-endorphin. Comp. Biochem. Physiol. 79:77–84.CrossRefGoogle Scholar
  53. Schoenberger, G. A., and Monnier, M., 1977, Characterization of a delta-encephalogram (-sleep) inducing peptide, Proc. Natl. Acad. Sci. U.S.A. 74:1282–1286.CrossRefGoogle Scholar
  54. Wiersma, C. A. G., Furschpan, E., and Florey, E., 1953, Physiological and pharmacological observations on muscle receptor organs of the crayfish Cambarus clarkii, Girard, J. Exp. Biol. 30:136–150.Google Scholar
  55. Williams, J. A., Pullin, R. S. V., Naylor, E., Smith, G., and Williams, B. G., 1979a, The role of Hanstrom’s organ in clock control in Carcinus maenas, in: Cyclic Phenomena in Marine Plants and Animals (E. Naylor, and R. G. Hartnoll, eds.), Pergamon Press, Oxford and New York, pp. 459–466.Google Scholar
  56. Williams, J. A., Pullin, R. S. V., Williams, B. G., Aréchiga, H., and Naylor, E., 1979b, Evaluation of the effects of injected eyestalk extract on rhythmic locomotor activity in Carcinus, Comp. Biochem. Physiol. 62A:903–907.CrossRefGoogle Scholar
  57. Wine, J. J., Mittenthal, J. E., and Kennedy, D., 1974, The structure of tonic flexor motoneurons in crayfish abdominal ganglia, J. Comp. Physiol. 93:315–336.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Hugo Aréchiga
    • 1
  • Ubaldo García
    • 1
  • Leonardo Rodríguez-Sosa
    • 1
  1. 1.Department of Physiology and BiophysicsCenter of Investigation and of Advanced Studies of the IPNMexico, D.F.Mexico

Personalised recommendations