The Central Nervous System of Aplysia californica

A Model System for Cellular Studies of Central Neurotransmission
  • Joyce K. Ono
  • Richard E. McCaman


Recent analyses of neuronal networks have focused on some of the quantitative features of a network, such as the temporal organization of generated patterns and the plasticity of the outputs. It is becoming clear that knowledge of the conductance mechanisms and temporal characteristics of synaptic responses mediated by specific neurotransmitters are important for understanding how neuronal networks generate their particular outputs and manifest plasticity. Studies in our laboratory are directed toward determining the role of chemically mediated responses in neuronal networks. We are interested in ascertaining what chemicals are used as neurotransmitters, identifying the neurons that utilize specific chemicals as neurotransmitters, characterizing the ionic conductance mechanisms that underlie the responses mediated by a transmitter, and evaluating the effects of various pharmacological agents on the specific receptors activating these conductances.


Conductance Mechanism Postsynaptic Neuron Synaptic Response Presynaptic Neuron Abdominal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuler, R. A., Neises, G. R., Harmison, G. C., Wenthold, R. J., and Fex, J., 1981, Immunocyto-chemical localization of aspartate aminotransferase immunoreactivity in cochlear nucleus of the guinea pig, Proc. Natl. Acad. Sci. U.S.A. 78:6553–6557.PubMedCrossRefGoogle Scholar
  2. Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A., and Mosfeldt Laursen, A., 1980, Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid, J. Physiol. (London) 305:279–296.Google Scholar
  3. Ascher, P., 1972, Inhibitory and excitatory effects of dopamine on Aplysia neurones, J. Physiol. (London) 225:173–209.Google Scholar
  4. Audersirk, G., Audersirk, T., McCaman, R., and Ono, J., 1985, Evidence for genetic influences on neurotransmitter content of identified neurons of Lymnaea stagnalis, Comp. Biochem. Physiol., (in press).Google Scholar
  5. Borys, H. K., Weinreich, D., and McCaman, R. E., 1973, Determination of glutamate and glutamine in individual neurons of Aplysia californica, J. Neurochem. 21:1349–1351.PubMedCrossRefGoogle Scholar
  6. Brownstein, M. J., Saavedra, J. M., Axelrod, J., Zeman, G. H., and Carpenter, D. O., 1974, Coexistence of several putative neurotransmitters in single identified neurons of Aplysia, Proc. Natl. Acad. Sci. U.S.A. 71:4662–4665.PubMedCrossRefGoogle Scholar
  7. Carpenter, D. O., Swann, J. W., and Yarowsky, P. J., 1977, Effect of curare on responses to different putative neurotransmitters in Aplysia neurons, J. Neurobiol. 8:119–132.PubMedCrossRefGoogle Scholar
  8. Cottrell, G. A., 1977, Identified amine-containing neurons and their synaptic connexions, Neurosciences 2:1–18.CrossRefGoogle Scholar
  9. Dodd, J. S., and Dingledine, R., 1979, Acetylcholine as an excitatory and inhibitory transmitter in the mammalian central nervous system, in: Progress in Brain Research, The Cholinergic Synapse, Volume 49 (S. Tucek, ed.), Elsevier, Amsterdam, Netherlands, pp. 254–266.Google Scholar
  10. Gerschenfeld, H. M., and Paupardin-Tritsch, D., 1974a, Ionic mechanisms and receptor properties underlying the response of molluscan neurons to 5-hydroxytryptamine, J. Physiol. (London) 243:427–456.Google Scholar
  11. Gerschenfeld, H. M., and Paupardin-Tritsch, D., 1974b, On the transmitter function of 5-hydroxytryptamine at excitatory and inhibitory monosynaptic junctions, J. Physiol. (London) 243:457–481.Google Scholar
  12. Giller, E., and Schwartz, J. H., 1971, Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica, J. Neurophysiol. 34:93–107.Google Scholar
  13. Goldstein, R., Kistler, H. B., Steinbusch, H. W. M., and Schwartz, J. H., 1984, Distribution of serotonin-immunoreactivity in juvenile Aplysia, Neurosciences 11:535–547.CrossRefGoogle Scholar
  14. Iliffe, T. M., McAdoo, D. J., Beyer, C. B., and Haber, B., 1977, Amino acid concentrations in the Aplysia nervous system: Neurons with high glycine concentrations, J. Neurochem. 28:1037–1042.PubMedCrossRefGoogle Scholar
  15. Kandel, E. R., and Wachtel, H., 1968, The functional organization of neural aggregates in Aplysia, in: Physiological and Biochemical Aspects of Nervous Integration (F. D. Carlson, ed.), Prentice Hall, New Jersey, pp. 17–65.Google Scholar
  16. Kehoe, J., 1972a, Ionic mechanisms of a two-component cholinergic inhibition in Aplysia neurones, J. Physiol. (London) 225:85–114.Google Scholar
  17. Kehoe, J., 1972b, Three acetylcholine receptors in Aplysia neurones, J. Physiol. (London) 225:115–146.Google Scholar
  18. Kehoe, J., 1972c, The physiological role of three acetylcholine receptors in synaptic transmission in Aphysia, J. Physiol. (London) 225:147–172.Google Scholar
  19. Kehoe, J., Sealock, R., and Bon, C., 1976, Effects of α-toxins from Bungarus multicinctus and Bungarus caeruleus an cholinergic responses in Aplysia neurones, Brain Res. 107:527–540.PubMedCrossRefGoogle Scholar
  20. McCaman, M. W., Ono, J. K., and McCaman, R. E., 1984, 5-Hydroxytryptamine measurements in molluscan ganglia and neurons using a modified radioenzymatic assay, J. Neurochem. 43:91–99.PubMedCrossRefGoogle Scholar
  21. McCaman, R. E., and McCaman, M. W., 1976, Biology of individual cholinergic neurons in the invertebrate CNS, in: Biology of Cholinergic Function (A. M. Goldberg and I. Hanin, eds.), Raven Press, New York, pp. 485–513.Google Scholar
  22. McCaman, R. E., and McKenna, D., 1978, Monosynaptic connections between histamine-containing neurons and their various follower cells, Brain Res. 141:165–171.PubMedCrossRefGoogle Scholar
  23. McCaman, R. E., and Ono, J. K., 1982, Aplysia cholinergic synapses: A model for central cholinergic function, in: Progress in Cholinergic Biology: Model Cholinergic Synapses (I. Hanin and A. M. Goldberg, eds.), Raven Press, New York, pp. 23–43.Google Scholar
  24. McCaman, R. E., and Stetzier, J., 1977, Determination of taurine in individual neurones of Aplysia californica, J. Neurochem. 29:739–741.PubMedCrossRefGoogle Scholar
  25. McCaman, R. E., and Weinreich, D., 1982, On the nature of histamine mediated slow hyperpolarizing synaptic potentials in identified neurons from the cerebral ganglion of Aplysia californica, J. Physiol. (London) 328:485–506.Google Scholar
  26. McCaman, R. E., and Weinreich, D., 1985, Histaminergic synaptic transmission in the cerebral ganglion of Aplysia, J. Neurophysiol. (in press).Google Scholar
  27. Ono, J. K., and McCaman, R. E., 1979, Measurement of endogenous transmitter levels after intracellular recording, Brain Res. 165:156–160.PubMedCrossRefGoogle Scholar
  28. Ono, J. K., and McCaman, R. E., 1980, Identification of additional histaminergic neurons in Aplysia: Improvements of single cell isolation techniques for in tandem physiological and chemical studies, Neurosciences 5:835–840.CrossRefGoogle Scholar
  29. Ono, J. K., and McCaman, R. E., 1984, Immunocytochemical localization and direct assays of serotonin-containing neurons in Aplysia, Neuroscience 11:549–560.PubMedCrossRefGoogle Scholar
  30. Ono, J. K., and Salvaterra, P. M., 1981, Snake toxin effects on cholinergic and noncholinergic responses of Aplysia californica, J. Neurosci. 1:259–270.PubMedGoogle Scholar
  31. Segal, M., and Koester, J., 1980, Different cholinergic synapses converging onto neurons in Aplysia produce the same synaptic action, Brain Res. 199:459–465.PubMedCrossRefGoogle Scholar
  32. Shain, W., Greene, L. A., Carpenter, D. O., Sytkowski, A. J., and Vogel, Z., 1974, Aplysia acetylcholine receptors: Blockade by and binding of α-bungarotoxin, Brain Res. 72:225–240.PubMedCrossRefGoogle Scholar
  33. Stein, C., and Weinreich, D., 1982, An in vitro characterization of gamma-glutamylhistamine synthetase: A novel enzyme catalyzing histamine metabolism in the central nervous system of the marine mollusk, Aplysia californica, J. Neurochem, 38:204–214.PubMedCrossRefGoogle Scholar
  34. Storm-Mathiesen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Haug, F. S., and Ottersen, O. P., 1983, First visualization of glutamate and GABA in neurons by immunocytochemistry, Nature (London) 301:517–520.CrossRefGoogle Scholar
  35. Tritt, S. H., Posner Lowe, I., and Byrne, J. H., 1983, A modification of the glyoxylic acid induced histofluorescence technique for demonstration of catecholamines and serotonin in tissues of Aplysia californica, Brain Res. 259:159–162.PubMedCrossRefGoogle Scholar
  36. Weinreich, D., 1976, The distribution of histamine, histidine and histidine decarboxylase in ganglia, nerves and single identified neuronal cell bodies of Aplysia californica, in: Neurobiology of Invertebrates. Gastropoda Brain (J. Salanki, ed.), Akademiai Kiado, Budapest, pp. 191–206.Google Scholar
  37. Weinreich, D., 1977, Synaptic responses mediated by identified histamine-containing neurones, Nature (London) 267:854–856.CrossRefGoogle Scholar
  38. Weinreich, D., McCaman, M. W., McCaman, R. E., and Vaughn, J. E., 1973, Chemical, enzymatic and ultrastructural characterization of 5-hydroxytryptamine-containing neurons from the ganglia of Aplysia californica and Tritonia diomedia, J. Neurochem. 20:969–976.PubMedCrossRefGoogle Scholar
  39. Weinreich, D., Weiner, C., and McCaman, R., 1976, Endogenous levels of histamine in single neurons isolated from CNS of Aplysia californica, Brain Res. 84:341–345.CrossRefGoogle Scholar
  40. Werman, R., 1966, Critertia for identification of a central nervous system transmitter, Comp. Biochem. Physiol. 18:745–766.PubMedCrossRefGoogle Scholar
  41. Zeman, G. H., and Carpenter, D. O., 1975, Asymmetric distribution of aspartate in ganglia and single neurons of Aplysia, Comp. Biochem. Physiol. 52:23–26.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Joyce K. Ono
    • 1
  • Richard E. McCaman
    • 1
  1. 1.Section of Neuropharmacology, Division of NeurosciencesBeckman Research Institute of the City of HopeDuarteUSA

Personalised recommendations