Advertisement

Magnetostatic Waves in Layered Planar Structures

  • M. S. Sodha
  • N. C. Srivastava

Abstract

The magnetostatic modes in ferrimagnetics were first observed by White and Solt (1956) as spurious peaks in a ferromagnetic resonance experiment. Mercereau and Feynman (1956) described the physical conditions for the occurrence of resonances in the presence of a nonuniform alternating magnetic field. Walker (1957) analyzed the magnetostatic modes of a ferrimagnetic spheroid. Subsequently, the magnetostatic modes in various sample geometries (e.g., sphere, ellipsoid, disc, rod, etc.) were theoretically and experimentally investigated (Walker, 1963). Auld (1960) considered plane wave propagation in an infinite ferrimagnetic medium and showed that, in those regions of the dispersion curves where the wavenumbers are relatively large, the plane wave field satisfies the magnetostatic conditions; thus, the magnetostatic modes are significant even for unbounded media. Damon and Eshbach (1961) investigated the magnetostatic modes in a planar structure, i.e., a semi-infinite ferromagnetic slab. The main purpose of their investigation was to clarify the relationship between the large wavenumber spin wave modes and the magnetostatic modes of a finite sample. As such, they analyzed, in detail, the surface and bulk modes*; of a semi-infinite ferrimagnetic slab which is magnetized parallel-to its face. It was recognized later (Olson and Yaeger, 1965; Brundle and Freedman, 1968a, b) that appreciable time delays can be obtained at microwave frequencies from guided surface and bulk magnetostatic waves. The subsequent theoretical and experimental studies of magnetostatic wave propagation in a variety of layered structures have led to the development of several devices. The initial thrust in this area was on surface waves propagating on rather thick YIG plates. In this case the nonuniform internal dc magnetic field makes the theoretical analysis as well as the interpretation of experimental data somewhat difficult. In recent years with the advent of epitaxial growth of high-quality ferrimagnetic films, the magnetostatic wave propagation in layered planar structures has become significant.

Keywords

Dispersion Curve Group Delay Yttrium Iron Garnet Bulk Mode Surface Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J.D., 1970, Delay of magnetostatic surface waves in YIG, Electron Lett, 6, 718.CrossRefGoogle Scholar
  2. Adam, J.D., and Collins, J.H., 1976, Microwave magnetostatic delay devices based on epitaxial YIG, Proc. IEEE, 64, 794.CrossRefGoogle Scholar
  3. Adam, J.D., Bennett, G.A., and Wilkinson, J., 1970, Experimental observation of magneto-static modes in a YIG slab, Electron. Lett, 6, 434.CrossRefGoogle Scholar
  4. Adam, J.D., Collins, J.H., and Owens, J.M., 1973, Magnetostatic surface wave group delay equaliser, Electron. Lett, 9, 537.CrossRefGoogle Scholar
  5. Adam, J.D., Owens, J.M and Collins, J.H., 1974, Magnetostatic delay lines for group delay equalization in millimetric waveguide communicating system, IEEE Trans. Magnt,MAG-10 783.Google Scholar
  6. Adam, J.D., Collins, J.H., and Owens, J.M., 1975, Microwave device applications of epitaxial magnetic garnets, Radio Electron Eng, 45, 738.CrossRefGoogle Scholar
  7. Adam, J.D., Patterson, R.W., and O’Keefe, T.W., 1978, Magnetostatic wave in interdigital transducers, J. AppL Phys, 49, 1797.CrossRefGoogle Scholar
  8. Akhiezer, A.I., Bar’yakhtar, V.G., and Peletminskiï, S.Y., 1963, Coherent amplification of spin waves, Plays. Lett., 4, 129.MATHGoogle Scholar
  9. Auld, B.A., 1960, Walker modes in large ferrite samples, J. Appl. Phys, 31, 1642.CrossRefGoogle Scholar
  10. Awai, I., Ohtsuki, K., and Ikenoue, J, 1976, Interaction of magnetic surface waves with drifting carriers, Jpn. J. Appl. Phys, 15, 1297.Google Scholar
  11. Bajpai, S.N., Rattan, I., and Srivastava, N.C., 1979, Magnetostatic volume waves in dielectric layered structure: effect of magnetocrystalline anisotropy, J. Appl. Phys, 50, 2887.CrossRefGoogle Scholar
  12. Bajpai, S.N., and Srivastava, N.C., 1980a, Magnetostatic bulk waves in arbitrarily magnetized dielectric layered structure, Phys. Status Solidi, (a)57, 307.Google Scholar
  13. Bajpai, S.N., and Srivastava, N.C., 19806, Magnetostatic bulk wave propagation in a multi-layered structure, Electron. Lett, 16, 269.Google Scholar
  14. Bardai, Z.M., Adam, J.D., Collins, J.H., and Parekh, J.P., 1976, Delay lines based on magnetostatic volume waves in epitaxial YIG, AIP Conf. Proc. No. 34, 268.Google Scholar
  15. Bardati, F., and Lampariello, P., 1979, The model spectrum of a lossy ferrimagnetic slab, IEEE Trans. Microwave Theory Tech, MIT-27, 679.Google Scholar
  16. Basterfield, J., 1969, Chemical polishing of yttrium iron garnet, J. Phys. D. Appl. Phys, 2, 115.CrossRefGoogle Scholar
  17. Bennett, G.A., and Adam, J.D., 1970, Identification of surface wave resonances on a metal backed YIG slab, Electron. Lett, 6, 789.CrossRefGoogle Scholar
  18. Benson, H., and Mills, D.L., 1969, Variation principle in spin wave theory: application to the theory of magnetostatic surface waves, Phys. Rev, 188, 849.CrossRefGoogle Scholar
  19. Bini, M., Filleti, P.L., Millanta, L., and Rubio, N., 1976, Energetic derivation of the amplification of magnetic waves interacting with a flow of charges in a semiconductor, J. Appl. Phys, 47, 3209.Google Scholar
  20. Bini, M., Millanta, L., and Rubio, N., 1977, Thin film magnetostatic amplifier; analytical expression of dispersion and gain properties, Electron Lett, 13, 114.CrossRefGoogle Scholar
  21. Bini, M., Millanta, L., and Rubio, N., 1978a, Interaction of magnetic waves with drifting charges, IEEE Trans. Magnt, MAC-14, 811.Google Scholar
  22. Bini, M., Filetti, P.L., Millanta, L., and Rubio, N., 1978b, Amplification of surface magnetic waves in transversely magnetized ferrite slabs, J. Appl. Phys, 49, 3554.CrossRefGoogle Scholar
  23. Bongianni, W.L., Collins, J.H., Pizzarello, F.A., and Wilson, D.A., 1969, Propagating magnetic waves in epitaxial YIG, IEEE Int. MW Symp. Digest, Dallas, 376.Google Scholar
  24. Bongianni, W.L., 1972, Magnetostatic propagation in a dielectric layered structure, J. Appl. Phys, 43, 2541.CrossRefGoogle Scholar
  25. Bongianni. W.L., 1974, X-band signal processing using magnetic waves, Microwave J, 17, 49.Google Scholar
  26. Bresler, A.D., 1959, TE,,,, surface wave at ferrite-air interface, Polytech. Inst. Brooklyn Microwave Res. Inst. Memo 48, R 723–59, PIB-651.Google Scholar
  27. Brekhovskikh, L.M., 1960, Waves in Layered Media, Academic Press, New York.Google Scholar
  28. Briggs, R.J., 1964, Electron-Stream Interactions with Plasmas, The MIT Press, Massachusetts.Google Scholar
  29. Brundle, L.K., and Freedman, N.J., 1968a, Nonlinear behaviour of magnetostatic surface waves, Electron. Lett, 4, 427.CrossRefGoogle Scholar
  30. Brundle, L.K., and Freedman, N.J., 1968b, Magnetoelastic surface waves on YIG slab, Electron. Lett, 4, 132.CrossRefGoogle Scholar
  31. Castéra, J.P., 1978, Tunable magnetostatic surface wave oscillator, IEEE Trans. Magnt, MAC-14, 826.Google Scholar
  32. Castéra, J.P., and Hartemann, P., 1978, Magnetoelastic surface wave oscillators and resonators, Proc. VIII European Microwave Conf., 658.Google Scholar
  33. Chang, N.S., and Matsuo, Y., 1968, Possibility of utilizing the coupling between a backward wave in YIG and waves associated with drift carrier stream in semiconductor, Proc. IEEE, 56, 765.CrossRefGoogle Scholar
  34. Chang, N.S., and Matsuo, Y., 1975, Characteristics of wave propagation in a composite system consisting of ferrite and semiconductor, Trans. Inst. Electron. Commun. Engr. Jpn, B58, 315.Google Scholar
  35. Chang, N.S., and Matsuo, Y., 1977, Ferromagnetic loss effect on magnetoelastic surface wave amplification by YIG-semiconductor coupled system, IEEE Trans. Magnt, MAG13, 1308.Google Scholar
  36. Chang, N.S., Yamada, S., and Matsuo, Y., 1975, Characteristics of magnetoelastic surface wave propagation in a layered structure consisting of metals, dielectrics, a semiconductor and YIG, Electron. Lett, 11, 83.CrossRefGoogle Scholar
  37. Chang, N.S., Yamada, S., and Matsuo, Y., 1976a, Amplification of magnetostatic surface waves in a layered structure consisting of metals, dielectrics, a semiconductor and YIG, J. Appl. Phys, 47, 385.CrossRefGoogle Scholar
  38. Chang, N.S., Yamada, S., and Matsuo, Y., 1976b, Amplification characteristics of magnetostatic surface and volume waves in semiconductor-dielectric-YIG-metal system, Wave Electron, 2, 341.Google Scholar
  39. Collins, J.H., Adam, J.D., and Owens, J.M., 1972, Microwave device applications of epitaxial ferrimagnetic films, Proc. European Solid State Devices Conf., 83.Google Scholar
  40. Collins, J.H., and Pizzarello, F.A., 1973. Propagating magnetic waves in thick films. A contemporary technology to surface wave acoustics, Int. J. Electron, 34, 319.CrossRefGoogle Scholar
  41. Collins, J.H., Owens, J.M., and Smith, C.V., Jr., 1977, Magnetostatic wave signal processing, Proc. Ultrasonics Symposium, 541.Google Scholar
  42. Courtois, L., Declercq, G., and Purichard, M., 1971, On the nonreciprocal aspect of gyromagnetic surface wave, AIP Conf. Proc. No. 5, 1541.Google Scholar
  43. Damon, R.W., and Eshbach, J.R., 1961, Magnetostatic modes of a ferromagnetic slab, J. Phys. Chem. Solids, 19, 308.CrossRefGoogle Scholar
  44. Damon, R.W., and van de Varrt, H., 1965, Propagation of magnetostatic spin waves at microwave frequencies in a normally magnetized disc, J. Appl. Phys, 36, 3453.CrossRefGoogle Scholar
  45. De Wames, R.E., and Wolfram, T., 1976, Characteristics of magnetostatic surface waves for a metallized ferrite slab, J. Appl. Phys, 41, 5243.CrossRefGoogle Scholar
  46. Elachi, C., 1975, Electromagnetic wave propagation in periodic media, IEEE Trans. Magnt, MAG-11, 36.Google Scholar
  47. Eshbach, J.R., and Damon, R.W., 1960, Surface magnetoelastic modes and surface spin waves, Phys. Rev, 118, 1208.CrossRefGoogle Scholar
  48. Ganguly, A.K., and Vittoria, C., 1974, Magnetostatic wave propagation in double layers of magnetically anisotropic slab, J. Appl. Phys, 45, 4665.CrossRefGoogle Scholar
  49. Ganguly, A.K., and Webb, D.C., 1975, Microstrip excitation of magnetostatic surface waves: Theory and experiment, IEEE Trans. Microwave Theory Tech, MIT-23, 998.Google Scholar
  50. Ganguly, A.K., Vittoria, C., and Webb, D., 1974, Interaction of surface magnetic waves in anisotropic magnetic slabs, AIP Conf. Proc. Magnetism and Magnetic Materials, 495.Google Scholar
  51. Ganguly, A.K., Webb, D.C., and Banks, C., 1978, Complex radiation impedence of microstrip excited magnetostatic surface waves, IEEE Trans. Microwave Theory Tech, MTT-26, 444.Google Scholar
  52. Gardiol, F.E., 1967, On the thermodynamic paradox in ferrite loaded waveguides, Proc. IEEE, 55, 1616.CrossRefGoogle Scholar
  53. Gerson, T.J., and Nadan, J.S., 1974, Surface electromagnetic modes of a ferrite slab, IEEE Trans. Microwave Theory Tech, MIT-22, 757.Google Scholar
  54. Glass, H.L., and Elliot, M.T., 1975, Attainment of intrinsic linewidth in yttrium iron garnet films grown by liquid phase epataxy, X Int. Conf. Crystallography, Amsterdam, paper 08. 3–8.Google Scholar
  55. Grant, P.M., Adam, J.D., and Collins, J.H., 1974, Surface wave device applications in microwave communication system, IEEE Trans. Commun, 22, 1410.CrossRefGoogle Scholar
  56. Gupta, S.S., and Srivastava, N.C., 1979, Power flow and energy distribution of magnetostatic bulk waves in dielectric layered structure, J. Appl. Phys, 50, 6697.CrossRefGoogle Scholar
  57. Gupta, S.S., and Srivastava, N.C., 1980, Theory of magnetic surface wave propagation in a thick YIG slab, J. Appl. Phys, 51, 4618.CrossRefGoogle Scholar
  58. Gupta, S.S., and Srivastava, N.C., 1980b, Ray optics approach to magnetostatic bulk wave propagation in a YIG slab, IEEE Trans. Microwave Theory Tech, MIT-28, 915.Google Scholar
  59. Howarth, J., 1975, A magnetoelastic delay line equaliser, Proc. IEEE MTTS Int. MW Symposium, 371.Google Scholar
  60. Hurd, R.A., 1970, Surface waves at ferrite-metal boundaries, Electron. Len, 6, 262.CrossRefGoogle Scholar
  61. Kawasaki, K., Takagi, H., and Umeno, M., 1974a, Passband control of surface magnetostatic waves by spacing a metal plate apart from the ferrite surface, IEEE Trans. Microwave Theory Tech, MIT-22, 924.Google Scholar
  62. Kawasaki, K., Takagi, H., and Umeno, M., 19746, The interaction of surface magnetostatic waves with drifting carriers in semiconductors, IEEE Trans. Microwave Theory Tech,MTT-22, 918.Google Scholar
  63. Kogelnik, H., and Weber, H.P., 1974, Rays, stored energy and power flow in dielectric waveguides, J. Opt. Soc. Am., 64, 174.Google Scholar
  64. Lax, B., and Button, K.J., 1956, Theory of ferrites in rectangular waveguides, IRE Trans. Antennas Propagt, AP-4, 531.Google Scholar
  65. Levinstein, H.J., Licht, S., Landorf, R.W., and Blank, S.L., 1971, Growth of high quality garnet thin films from supercooled melt, Appl. Phys. Leu, 19, 486.CrossRefGoogle Scholar
  66. Masuda, M., Chang, N.S., and Matsuo, Y., 1974, Magnetostatic surface waves in ferrite slab adjacent to semiconductor, IEEE Trans. Microwave Theory Tech, MTT-22, 132.Google Scholar
  67. Mee, J.E., Pullian, G.R., Archer, A.L., and Besser, P.J., 1969, Magnetic oxide films, IEEE Trans. Magnt, MAG-5, 717.Google Scholar
  68. Mercereau, J.E., and Feynman, R.P., 1956, Physical conditions for ferromagnetic resonance, Phys. Rev, 104, 63.CrossRefGoogle Scholar
  69. Merry, J.B., and Sethares, J.C., 1973, Low loss magnetostatic surface waves at frequencies up to 15 GHz, IEEE Trans. Magnt, MAG-9, 527.Google Scholar
  70. Miller, N.D.J., 1976a, Magnetostatic volume wave propagation in a dielectric layered structure, Phys. Status Solidi, (a)37, 83.Google Scholar
  71. Miller, N.D.J., 1976b, Nondispersive magnetostatic volume wave delay line, Electron. Lett, 12, 466.CrossRefGoogle Scholar
  72. Miller, N.D.J., 1977, Nonreciprocal propagation of magnetostatic volume waves, Phys. Status Solidi (a)43, 593.Google Scholar
  73. Miller, N.D.J., 1978, Nonreciprocal magnetostatic volume waves, IEEE Trans. Magnt, MAG-14, 829.Google Scholar
  74. Miller, N.D.J., and Brown, D., 1976, Tunable magnetoelastic surface wave oscillator, Electron. Lett, 12, 209.CrossRefGoogle Scholar
  75. Morgenthaler, F.R., 1970, Nonreciprocal magnetostatic surface waves with independently controllable propagation and decay constant, J. Appl. Phys, 41, 1014.CrossRefGoogle Scholar
  76. Morgenthaler, F.R., 1977, Magnetostatic waves bound to a dc field gradient, IEEE Trans. Magnt, MAG-13, 1252.Google Scholar
  77. Neviere, M., Petit, R., and Cadilhac, M., 1973, About the theory of optical grating complex waveguide system, Opt. Commun, 8, 113.CrossRefGoogle Scholar
  78. Newburgh, R.G., Blacksmith, P., Budreau, A.J., and Sethares, J.C., 1974, Acoustic and magnetic surface wave ring interferometers for rotation sensing, Proc. IEEE, 62, 1621.CrossRefGoogle Scholar
  79. O’Keeffe, T.W., and Patterson, R.W., 1978, Magnetostatic surface wave propagation in finite samples, J. Appl. Phys, 49, 4886.CrossRefGoogle Scholar
  80. Olson, F.A., and Yaeger, J.R., 1965, Microwave delay techniques using YIG, IEEE Trans. Microwave Theory Tech, MTT-13, 63.Google Scholar
  81. Owens, J.M., Collins, J.H., and Adam, J.D., 1975, Planar microwave multipole filters using LPE—YIG, AIP Conf. Proc. No. 24, 497.Google Scholar
  82. Parekh, J.P., 1973, Magnetostatic surface waves on a partially metallized YIG plate, Proc. IEEE, 61, 1371.CrossRefGoogle Scholar
  83. Parekh, J.P., 1975, Dielectrically induced surface waves and the magnetodynamic modes of a YIG plate, J. Appl. Phys, 46, 5040.CrossRefGoogle Scholar
  84. Parekh, J.P., 1979, Theory for magnetostatic forward volume wave excitation, J. AppL Phys, 50, 2452.CrossRefGoogle Scholar
  85. Parekh, J.P., and Ponamgi, S.R., 1973, Dielectrically induced surface wave on a YIG substrate, J. AppL Phys, 44, 1384, errt. 4791.Google Scholar
  86. Parekh, J.P., and Tuan, H.S., 1979a, Excitation of magnetostatic surface waves in an arbitrary direction on tangentially YIG film, IEEE Trans. Megnt, MAC-15, 1747.Google Scholar
  87. Parekh, J.P., and Tuan, H.S., 1979b, Meander line excitation of magnetostatic surface waves, Proc. IEEE, 67, 182.CrossRefGoogle Scholar
  88. Peng, S.T., Tamir, T., and Bertoni, H.L., 1975, Theory of periodic waveguides, IEEE Trans. Microwave Theory Tech, MIT-23, 123.Google Scholar
  89. Pizzarello, F.A., Coerver, L.E., and Collins, J.H., 1970, Magnetic steering of magnetostatic waves in epitaxial YIG films, J. Appl. Phys, 41, 1016.CrossRefGoogle Scholar
  90. Renard, R.H., 1964, Total reflection: a new evaluation of the Goos-Hanchen shift, J. Opt. Soc. Am., 54, 1190.Google Scholar
  91. Robinson, B.B., Vural, B., and Parekh, J.P., 1970, Spin-wave/carrier wave interaction, IEEE Trans. Electron Devices, ED-17, 224.Google Scholar
  92. Schiiz, W., 1973, Spin wave propagation in epitaxial YIG films, Phillips Res. Rep, 28, 50. Schlömann, E., 1969, Amplification of magnetoelastic surface waves by interaction withGoogle Scholar
  93. drifting carriers in crossed electric and magnetic fields, J. Appl. Phys,40 1422.Google Scholar
  94. Schneider, B., 1972, Effect of crystalline anisotropy on the magnetostatic spin wave modes in ferromagnetic plates: I. Theoretical results for infinite plates, Phys. Status Solidi, (b)51, 325.Google Scholar
  95. Seidel, H., and Fletcher, R.C., 1959, Gyromagnetic modes in waveguides partially loaded with ferrite, Bell Syst. Tech. J, 38, 1427.Google Scholar
  96. Seshadri, S.R., 1970, Surface magnetostatic modes of ferrite slab, Proc. IEEE, 58, 506.CrossRefGoogle Scholar
  97. Seshadri, S.R., 1978, Theory of a YIG film filter, J. Appl. Phys, 49, 6079.CrossRefGoogle Scholar
  98. Sethares, J.C., 1975, Magnetostatic surface waves on a cylinder, Air Force Cambridge Res. Rept. AFCRL-TR-0380.Google Scholar
  99. Sethares, J.C., 1978, Magnetostatic surface wave transducer design, Int. Microwave Symp. Digest, IEEE Cat. # 78 CH 1335–7 MIT.Google Scholar
  100. Sethares, J.C., and Merry, J.B., 1974, Magnetostatic surface waves in ferrimagnetics above 4 GHz, Air Force Cambridge Res. Rept. AFCRL-TR-74–0112, Phys. Sc. Res. Paper No. 587.Google Scholar
  101. Sethares, J.C., and Stiglitz, M.R., 1974, Propagation loss and MSSW delay lines, IEEE Trans. Magot, MAC-10, 787.Google Scholar
  102. Sethares, J.C., and Weinberg, I.J., 1979a, Apodization of variable coupling magnetoelastic surface wave transducers, J. AppL Phys, 50, 2458.CrossRefGoogle Scholar
  103. Sethares, J.C., and Weinberg, I.J., 1979b, Insertion loss of apodized-weighted and nonuniform magnetostatic surface wave transducers, Joint Inter MAG-MMM Conf., New York, paper 6-C.Google Scholar
  104. Sethares, J.C., Tsai, T., and Koltunov, I., 1978, Periodic magnetostatic surface wave transducers, Rome Air Force Dev. Centre Res. Rept., RADC-TR-78–78.Google Scholar
  105. Sittig, E.K., and Coquin, G.A., 1968, Filters and dispersive delay lines using repetitively mismatched ultrasonic transmission line, IEEE Trans. Sonics Ultrason, SU-15, 111.Google Scholar
  106. Sparks, M., 1964, Ferromagnetic Relaxation Theory, McGraw-Hill Book Co., New York.Google Scholar
  107. Sparks, M., 1969, Magnetostatic surface modes of a YIG slab, Electron. Leu, 5, 618.CrossRefGoogle Scholar
  108. Srivastava, N.C., 1976, Magnetostatic modes of a slab of hexagonal planar ferrite, J. AppL Phys, 47, 5447.CrossRefGoogle Scholar
  109. Srivastava, N.C., 1978b, Propagation of magnetostatic waves along curved ferrite surfaces, IEEE Trans. Microwave Theory Tech, MIT-26, 252.Google Scholar
  110. Srivastava, N.C., 1978c, Propagation of surface waves through the gap between oppositely magnetized ferrite substrates, IEEE Trans. Microwave Theory Tech, MIT-26, 213.Google Scholar
  111. Steele, M.C., and Vural, B., 1969, Wave Interaction in Solid State Plasmas, McGraw-Hill Book Co., New York.Google Scholar
  112. Sykes, C.G., Adam, J.D., and Collins, J.H., 1976, Magnetostatic wave propagation in periodic structures, Appl. Phys. Lett, 29, 388.CrossRefGoogle Scholar
  113. Szustakowski, M., and Wecki, B., 1973, Amplification of magnetostatic surface waves in YIG-Ge hybrid system, Proc. Vib. Probl, 14, 155.Google Scholar
  114. Tamir, T., 1973, Inhomogeneous wave types at planar interface: II. Surface waves, Optik, 37, 204.Google Scholar
  115. Tien, P.K., 1971, Light waves in thin films and integrated optics, Appl. Opt, 10, 2395.CrossRefGoogle Scholar
  116. Tien, P.K., 1977, Integrated optics and new wave phenomena and optical waveguides, Rev. Mod. Phys, 49, 361.CrossRefGoogle Scholar
  117. Trivelpiece, A.W., Ignatius, A., and Holscher, P.C., 1961, Amplification of magnetostatic waves by interaction with charged carriers drifting through a semiconductor, J. Appl. Phys, 32, 259.CrossRefGoogle Scholar
  118. Tsai, M.C., Wu, H.J., Owens, J.M., and Smith, C.V., Jr., 1976, Magnetostatic propagation for uniform normally magnetized multilayer planar structures, AIP Conf. Proc, No. 34, 280.CrossRefGoogle Scholar
  119. Tsutsumi, M., 1974, Magnetostatic surface wave propagation through air gap between adjacent magnetic substrates, Proc. IEEE, 62, 541.CrossRefGoogle Scholar
  120. Tsutsumi, M., and Yuki, Y., 1975, Magnetostatic wave propagation in periodically magnetized ferrites, Electron. Comm. Jpn, 58, 74.Google Scholar
  121. Tsutsumi, M., Bhattacharya, T., and Kumagai, N., 1976, Effect of magnetic perturbation on magnetic surface wave propagation, IEEE Trans. Microwave Theory Tech, MTT-24, 591.Google Scholar
  122. Tsutsumi, M., Sakaguchi, Y., and Kumagai, N., 1977a, Behaviour of magnetostatic waves in a periodically corrugated YIG slab, IEEE Trans. Microwave Theory Tech, MTT-25, 224.Google Scholar
  123. Tsutsumi, M., Sakaguchi, Y., and Kumagai, N., 1977b, The magnetostatic surface wave propagation in a corrugated YIG slab, Appl. Phys. Lett, 31, 779.CrossRefGoogle Scholar
  124. Vaskovskii, A.V., Zubkov, V.I., Ki’ldishev, V.N., and Murmuzev, B.A., 1972, Interaction of surface magnetostatic waves with carriers on a ferrite-semiconductor interface, JETP Lett, 16, 2.Google Scholar
  125. Vaslow, D.F., 1973, Group delay time for a surface wave on a YIG film backed by a grounded dielectric, Proc. IEEE, 61, 142.CrossRefGoogle Scholar
  126. Vaslow, D.F., 1974, Surface waves on a ferrite magnetized perpendicular to the interface, IEEE Trans. Microwave Theory Tech, MTT-22, 743.Google Scholar
  127. Vittoria, C., and Wilsey, N.D., 1974, Magnetostatic wave propagation loss in an anisotropic insulator, J. Appl. Phys, 45, 414.CrossRefGoogle Scholar
  128. Volluet, G., 1980, Unidirectional magnetostatic forward volume wave transducers, IEEE Trans. Magnt, MAG-16, 1162.Google Scholar
  129. Vural, B 1966, Interaction of spin waves with drifted carriers in solids, J. Appl. Phys,37 1030.Google Scholar
  130. Vural, B and Thomas, E., 1968, Helicon-spin wave interaction in the magnetic semiconductor Ag, Cd, _ Cr Se„ Appl. Phys. Lett,12 14.Google Scholar
  131. Walker, L.R 1957, Magnetoelastic modes in ferromagnetic resonance, Phys. Rev,105 390.Google Scholar
  132. Walker, L.R 1963, in: Magnetism,Vol. 1, (G.T. Rado and H. Suhl, eds.), Academic Press, New York.Google Scholar
  133. Webb, D.C., Vittoria, C., Lubitz, P., and Lesoff, H., 1975, Magnetostatic propagation in thin films of liquid phase epitaxy YIG, IEEE Trans. Magnt, MAC-11, 1259.Google Scholar
  134. Weinberg, I.J., and Sethares, J.C., 1978, Magnetostatic wave transducers with variable coupling, Rome Air Force Dev. Centre Res. Rept., RADC-TR-78–205.Google Scholar
  135. White, R.L., and Solt, I.H., Jr., 1956, Multiple ferromagnetic resonance in ferrite spheres, Phys. Rev, 104, 56.CrossRefGoogle Scholar
  136. Wolfram, T., 1970, Magnetostatic surface waves in layered magnetic structures, J. Appl. Phys, 41, 4748.CrossRefGoogle Scholar
  137. Wu, H.J., Smith, C.V., Jr., Collins, J.H., and Owens, J.M., 1977, Bandpass filtering with multibar magnetostatic surface wave transducers, Electron. Lett, 13, 610.CrossRefGoogle Scholar
  138. Yamada, S., Chang, N.S., and Matsuo, Y., 1977, Energy analysis for the amplification phenomena of magnetostatic surface waves in a YIG-semiconductor coupled system, IEEE Trans. Microwave Theory Tech, MIT-25, 600.Google Scholar
  139. Young, P., 1969, Effect of boundary conditions on the propagation of surface magnetostatic waves in a transversely magnetized thin slab of YIG, Electron. Lett, 5, 429.CrossRefGoogle Scholar
  140. Yukawa, T.., Yamada, S., Abe, K., and Ikenoue, J., 1977. Effect of metal on dispersion relation of magnetostatic surface waves, Jpn. J. Appl. Phys, 16, 2187.CrossRefGoogle Scholar
  141. Yukawa, T., Ikenoue, J., Yamada, S., and Abe, K., 1978a, Effect of metal on dispersion relation of magnetostatic volume waves, J. Appl. Phys, 49, 346.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • M. S. Sodha
    • 1
  • N. C. Srivastava
    • 1
  1. 1.Indian Institute of TechnologyNew DelhiIndia

Personalised recommendations