Advertisement

External Labeling of Cell Surface Carbohydrates

  • Carl G. Gahmberg
  • Koichi Itaya
  • Sen-Itiroh Hakomori

Abstract

An increasing amount of evidence indicates that control of growth behavior and proliferation of animal cells depend on their profiles of surface glycoproteins and glycolipids. It is also likely that the organization and assemblage of glycoprotein and glycolipid in membranes can be correlated with tumorigenicity and immunogenicity of animal cells (for reviews see Ginsburg and Kobata, 1971; Hakomori, 1973). The reasons for believing that complex carbohydrates on cell surfaces play important roles in controlling cell division and cellular recognition are that the structure, composition, and organization of these components change in association with “contact inhibition” (Hakomori, 1970; Robbins and Macpherson, 1971; Sakiyama et al., 1972; Critchley and Macpherson, 1973), cell aggregation (Moscona, 1973; Henkart et al., 1973; Roth et al., 1971; Gottlieb et al., 1974), mitotic cell cycle (Chatterjee et al., 1973; Gahmberg and Hakomori, 1974), and malignant transformation (for reviews see Brady and Fishman, 1974; Hakomori, 1975). In these processes, only those structures that are exposed to the external environment of cells can receive and transmit extracellular informations and only these structures can be recognized by other cells or extracellular molecules. The surface-exposed carbohydrates of cells are, therefore, of great cell-biological significance, and it has become increasingly important to elucidate the exposed chemical structures.

Keywords

Sialic Acid Label Pattern Rous Sarcoma Virus Human Erythrocyte Membrane Surface Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral, D., Bernstein, L., Morse, D., and Horecker, B. L., 1963, Galactose oxidase of Polyporus circinatus, a copper enzyme, J. Biol. Chem. 238: 2281.PubMedGoogle Scholar
  2. Avigad, G., Amaral, D., Asensio, C., and Horecker, B. L., 1962, The D-galactose oxidase of Polyporus circinatus, J. Biol. Chem. 237: 2736.PubMedGoogle Scholar
  3. Bender, W. W., Garan, H., and Berg, H. C., 1971, Proteins of the human erythrocyte membrane as modified by pronase, J. Mol. Biol. 58: 783.PubMedCrossRefGoogle Scholar
  4. Blumenfeld, O. O., Gallop, P. M., and Liao, T. H., 1972, Modification and introduction of a specific radioactive label into the erythrocyte membrane sialoglycoproteins, Biochem. Biophys. Res. Commun. 48: 242.PubMedCrossRefGoogle Scholar
  5. Bonner, W. M., and Laskey, R. A., 1974, A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels, Eur. J. Biochem. 46: 83.PubMedCrossRefGoogle Scholar
  6. Brady, R. O., and Fishman, P., 1974, Biosynthesis of glycolipids in virus-transformed cells, Biochim. Biophys. Acta 335: 121.Google Scholar
  7. Bretscher, M. S., 1971, Human erythrocyte membranes: specific labeling of surface proteins, J. Mol. Biol. 58: 775.PubMedCrossRefGoogle Scholar
  8. Bretscher, M. S., 1973, Membrane structure: some general principles, Science 181: 622.PubMedCrossRefGoogle Scholar
  9. Chatterjee, S., Sweeley, C. C., and Velicer, L. F., 1973, Biosynthesis of proteins, nucleic acids and glycosphingolipids by synchronized KB cells, Biochem. Biophys. Res. Commun. 54: 585.PubMedCrossRefGoogle Scholar
  10. Cook, W. J., and Bugg, C. E., 1975, Calcium-carbohydrate bridges composed of uncharged sugars. Structure of a hydrated calcium bromide complex of a-fucose, Biochim. Biophys. Acta 389: 428.PubMedCrossRefGoogle Scholar
  11. Critchley, D. R., 1974, Cell surface proteins of NIL, hamster fibroblasts labeled by a galactose oxidase tritiated borohydride method, Cell 3: 121.PubMedCrossRefGoogle Scholar
  12. Critchley, D. R., and Macpherson, I., 1973, Cell density-dependent glycolipids in NIL, hamster cells, derived malignant and transformed cell lines, Biochem. Biophys. Acta 346: 145.Google Scholar
  13. Datta, P., 1974, Labeling of the external surface of hamster and mouse fibroblast with [14C] sialic acid, Biochemistry 13: 3987.PubMedCrossRefGoogle Scholar
  14. Edelman, G. M., Yahara, I., and Wang, J. L., 1973, Receptor mobility and receptor- cytoplasmic interactions in lymphocytes, Proc. Natl. Acad. Sci. USA 70: 1442.PubMedCrossRefGoogle Scholar
  15. Everhart, L. P., and Rubin, R. W., 1974, Cyclic changes in the cell surface. 1. Change in thymidine transport and its inhibition by cytochalasin B in chinese hamster ovary cells, J. Cell Biol. 60: 434.PubMedCrossRefGoogle Scholar
  16. Gahmberg, C. G., and Hakomori, S., 1973a, External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes, J. Biol. Chem. 248: 4311.PubMedGoogle Scholar
  17. Gahmberg, C. G., and Hakomori, S., 1973b, Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipid, Proc. Natl. Acad. Sci. USA 70: 3329.PubMedCrossRefGoogle Scholar
  18. Gahmberg, C. G., and Hakomori, S., 1974, Organization of glycolipids and glycoproteins in surface membranes: dependency on cell cycle and on transformation, Biochem. Biophys. Res. Commun. 59: 283.PubMedCrossRefGoogle Scholar
  19. Gahmberg, C. G., and Hakomori, S., 1975a, Surface carbohydrates of hamster fibroblasts. I. Chemical characterization of surface-labeled glycosphingolipids and a specific ceramide tetrasaccharide for transformants, J. Biol. Chem. 250: 2438.PubMedGoogle Scholar
  20. Gahmberg, C. G., and Hakomori, S., 1975b, Surface carbohydrates of hamster fibroblasts. II. Interaction of hamster NIL cell surfaces with Ricinus communis lectin and concanavalin A as revealed by surface galactosyl label, J. Biol. Chem. 250: 2447.PubMedGoogle Scholar
  21. Gahmberg, C. G., Kiehn, D., and Hakomori, S., 1974, Changes in a surface-labeled galactoprotein and in glycolipid concentrations in cells transformed by a temperature-sensitive polyoma virus mutant, Nature (Land.) 248: 413.CrossRefGoogle Scholar
  22. Ginsburg, V., and Kobata, A., 1971, Structure and function of surface components of mammalian cells, in: Structure and Function of Biological Membranes, ( L. Rothfield, ed.), p. 439, Academic Press, New York.Google Scholar
  23. Gottlieb, D. I., Merrell, R., and Glaser, L., 1974, Temporal changes in embryonal cell surface recognition, Proc. Natl. Acad. Sci. USA 71: 1800.PubMedCrossRefGoogle Scholar
  24. Hajra, A. K., Bowen, D. M., Kishimoto, Y., and Radin, N. S., 1966, Cerebroside galactosidase of brain, J. Lipid Res. 7: 379.PubMedGoogle Scholar
  25. Hakomori, S., 1970, Cell density-dependent changes of glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells, Proc. Natl. Acad. Sci. USA 67: 1741.PubMedCrossRefGoogle Scholar
  26. Hakomori, S., 1973, Glycolipids of tumor cell membrane, in: Adv. Cancer Res. 18: 265.Google Scholar
  27. Hakomori, S., 1975, Structures and organization of cell surface glycolipids: Dependency on cell growth and malignant transformation, Biochem. Biophys. Acta 417: 55.PubMedGoogle Scholar
  28. Henkart, P., Humphreys, S., and Humphreys, T., 1973, Characterization of sponge aggregation factor. A unique proteoglycan complex, Biochemistry 12: 3045.PubMedCrossRefGoogle Scholar
  29. Hogg, N. M., 1974, A comparison of membrane proteins of normal and transformed cells by lactoperoxidase labeling, Proc. Natl. Acad. Sci. USA 71: 489.PubMedCrossRefGoogle Scholar
  30. Hubbard, A. L., and Cohn, Z. A., 1972, The enzymatic iodination of the red cell membrane, J. Cell Biol. 55: 390.PubMedCrossRefGoogle Scholar
  31. Hynes, R. O., 1973, Alteration of cell surface proteins by viral transformation and proteolysis, Proc. Natl. Acad. Sci. USA 70: 3170.PubMedCrossRefGoogle Scholar
  32. ltaya, K., Gahmberg, C. G., and Hakomori, S., 1975, Cell surface labeling of erythrocyte glycoproteins by galactose oxidase and Mn++-catalyzed coupling reaction with methionine sulfone hydrazide, Biochem. Biophys. Res. Commun. 64: 1028.CrossRefGoogle Scholar
  33. Kean, E. L., 1966, Separation of gluco-and galacto-cerebrosides by means of borate and thin-layer chromatography, J. Lipid Res. 7: 449.PubMedGoogle Scholar
  34. Kelly-Falcoz, F., Greenberg, H., and Horecker, B. L., 1965, Studies on the structure and role of disulfide linkages, J. Biol. Chem. 240: 2966.PubMedGoogle Scholar
  35. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of Bacteriophage T4, Nature (Land.) 227: 680.CrossRefGoogle Scholar
  36. Laine, R. A., Esselman, W. J.,and Sweeley, C. C., 1972, Gas-liquid chromatography of carbohydrates, in: Methods in Enzymology,(V. Ginsburg, ed.), 28:Part B:159.Google Scholar
  37. Morell, A. G., Van Den Hamer, C. J. A., Scheinberg, I. H., and Ashwell, G., 1966, Physical and chemical studies on ceruloplasmin. IV. Preparation of radioactive, sialic-acid free ceruloplasmin labeled with tritium on terminal D-galactose residues, J. Biol. Chem. 241: 3745.PubMedGoogle Scholar
  38. Moscona, A. A., 1973, Cell aggregation, in: Cell Biology in Medicine, Vol. 17 ( E. Edward Bittar, ed.), p. 571, Wiley, New York.Google Scholar
  39. Nicolson, G. L., 1971, Difference in topology of normal and tumor cell membranes shown by different surface distributions of ferritin-conjugated concanavalin A, Nature (Loud.) 233: 244.Google Scholar
  40. Nicolson, G. L., 1972, Topography of membrane concanavalin A sites modified by proteolysis, Nature (London) New Biol. 239: 193.Google Scholar
  41. Nicolson, G. L., 1974, The interactions of lectins with animal cell surfaces, Int. Rev. Cytol. 39: 89.PubMedCrossRefGoogle Scholar
  42. Nicolson, G. L., Blaustein, J., and Etzler, M. L., 1974, Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma, Biochemistry 13: 196.PubMedCrossRefGoogle Scholar
  43. Phillips, D. R., and Morrison, M., 1970, The arrangement of proteins in the human erythrocyte membrane, Biochem. Biophys. Res. Commun. 40: 284.PubMedCrossRefGoogle Scholar
  44. Price, H., Kundii, S., and Ledeen, R., 1975, Structure of gangliosides of bovine adrenal medulla, Biochemistry 14: 1512.PubMedCrossRefGoogle Scholar
  45. Rice, R. H., and Means, G. E., 1971, Radioactive labeling of proteins in vitro, J. Biol. Chem. 246: 831.PubMedGoogle Scholar
  46. Rieber, M., and Irwin, T. L., 1974, The possible correlation of growth rate and expression of transformation with temperature-dependent modification in high-molecular weight membrane glycoproteins in mammalian cells transformed by a wild-type and by a thermosensitive mutant of avian sarcoma virus, Cancer Res. 34: 3469.PubMedGoogle Scholar
  47. Robbins, P. W., and Macpherson, I., 1971, Glycolipid synthesis in normal and transformed animal cells, Proc. R. Soc. London. Ser B., 177: 41.CrossRefGoogle Scholar
  48. Roth, S., McGuire, E., and Roseman, S., 1971, Evidence for cell surface glycosyl transferases—their potential role in cellular recognition, J. Cell Biol. 51: 536.PubMedCrossRefGoogle Scholar
  49. Saito, T., and Hakomori, S., 1971, Quantitative isolation of total glycosphipgolipids from animal cells, J. Lipid Res. 12: 257.PubMedGoogle Scholar
  50. Sakiyama, H., Gross, S. K., and Robbins, P. W., 1972, Glycolipid synthesis in normal and virus-transformed hamster cell lines, Proc. Natl. Acad. Sci. USA 69: 372.CrossRefGoogle Scholar
  51. Singer, J., 1974, The molecular organization of membranes, Ann. Rev. Biochem. 43: 805.PubMedCrossRefGoogle Scholar
  52. Steck, T. L., 1972, The organization of proteins in human erythrocyte membranes, in: Membrane Research, ( C. F. Fox, ed.), p. 71, Academic Press, New York.Google Scholar
  53. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1.PubMedCrossRefGoogle Scholar
  54. Steck, T. L., and Dawson, G., 1974, Topographical distribution of complex carbohydrates in the erythrocyte membrane, J. Biol. Chem. 249: 2135.PubMedGoogle Scholar
  55. Stone, N. R., Smith, R. E., and Joklik, W. K., 1974, Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed by avian sarcome viruses, Virology 58: 86.PubMedCrossRefGoogle Scholar
  56. Suzuki, Y., and Suzuki, K., 1972, Specific radioactive labeling of terminal N-acetylgalactosamine of glycosphingolipids by the galactose oxidase sodium borohydride method, J. Lipid Res. 13: 687.PubMedGoogle Scholar
  57. Sweeley, C. C., and Walker, B., 1964, Determination of carbyhydrates in glycolipids and gangliosides by gas chromatography, Anal. Chem. 36: 1461.CrossRefGoogle Scholar
  58. Vaheri, A., and Ruoslahti, E., 1974, Disappearance of a major cell-type specific surface glycoprotein antigen (SF) after transformation of fibroblasts by Rous sarcoma virus, Int. J. Cancer 13: 579.PubMedCrossRefGoogle Scholar
  59. van Lenten, L., and Ashwell, G. J., 1971, A general method for the tritiation of sialic acid-containing glycoproteins, J. Biol. Chem. 246: 1889.PubMedGoogle Scholar
  60. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244: 4406.PubMedGoogle Scholar
  61. Wickus, G. G., Branton, P. E., and Robbins, P. W., 1974, Rous sarcoma virus transformation of the chick cell surface, in: Control of Proliferation in Animal Cells, Wickus, G. G., Branton, P. E., and Robbins, P. W., eds.), p. 541, Cold Spring Harbor Laboratory Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Carl G. Gahmberg
    • 1
    • 2
  • Koichi Itaya
    • 1
    • 2
  • Sen-Itiroh Hakomori
    • 1
    • 2
  1. 1.Departments of Pathobiology and MicrobiologyUniversity of Washington School of Public Health and School of MedicineSeattleUSA
  2. 2.Division of Biochemical OncologyHutchinson Cancer Research CenterSeattleUSA

Personalised recommendations