Advertisement

The Use of Phospholipases in the Determination of Asymmetric Phospholipid Distribution in Membranes

  • Ben Roelofsen
  • Robert F. A. Zwaal

Abstract

Specific information on the localization of components in the membrane is a necessary prerequisite to understanding the molecular organization and function of biological membranes. In the last decade, variety of techniques have been developed that provide information on the organization of membrane constituents. For example, various investigators have shown that several proteins may occupy different locations in the red cell membrane (for recent reviews, see Wallach, 1972 and Juliano, 1973), and a nonrandom distribution of phospholipids between the exterior and interior sides of the erythrocyte membrane was proposed by Bretscher (1972, 1973) [based on the observation that the relatively nonpermeant reagent formylmethionyl-sulfone methylphosphate (FMMP) failed to react with phosphatidylethanolamine and phosphatidylserine of intact cells]. These observations of Bretscher were essentially confirmed by Gordeski and Marinetti (1973). They used the nonpenetrating probe, 2,4,6-trinitrobenzene-sulfonate, although they could label some of the phosphatidylethanolamine of intact cells. Since both these reagents are intrinsically unable to react with cholinecontaining phospholipids, these results should be taken only as indirect evidence that lecithin and sphingomyelin form the outer monolayer of the erythrocyte membrane.

Keywords

Erythrocyte Membrane Human Erythrocyte Human Erythrocyte Membrane Phospholipid Hydrolysis Pancreatic Phospholipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awasthi, Y. C., Berezney, R., Ruzicka, F. J., and Crane, F. L., 1969, Action of phospholipase A on mitochondrial cristae, Biochim. Biophys. Acta 189: 457.PubMedCrossRefGoogle Scholar
  2. Awasthi, Y. C., Ruzicka, F. J., and Crane, F. L., 1970, The relation between phospholipase action and release of NADH dehydrogenase from mitochondrial membrane, Biochim. Biophys. Acta 203: 233.PubMedCrossRefGoogle Scholar
  3. Bodemann, H., and Passow, H., 1972, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membr. Biol. 8: 1.PubMedCrossRefGoogle Scholar
  4. Böttcher, C. J. F., van Gent, C. M., and Pries, C., 1961, A rapid and sensitive sub-microphosphorus determination, Anal. Chim. Acta 24: 203.CrossRefGoogle Scholar
  5. Bretscher, M. S., 1971, Principal glycoprotein on the surface extends into the interior in human erythrocytes, Nature (London) New Biol. 231: 229.CrossRefGoogle Scholar
  6. Bretscher, M. S., 1972, Asymmetric lipid bilayer structure for biological membranes, Nature (London) New Biol. 236: 11.CrossRefGoogle Scholar
  7. Bretscher, M. S., 1973, Membrane structure: Some general principles. Membranes are asymmetric lipid bilayers in which cytoplasmically synthesized proteins are dissolved, Science 181: 622.PubMedCrossRefGoogle Scholar
  8. Broekhuyse, R. M., 1969, Quantitative two-dimensional thin-layer chromatography of blood phospholipids, Clin. Chim. Acta 23: 457.PubMedCrossRefGoogle Scholar
  9. Coleman, R., Finean, J. B., Knutton, S., and Limbrick, A. R., 1970, A structural study of the modification of erythrocyte ghosts by phospholipase C, Biochim. Biophys. Acta 219: 81.PubMedCrossRefGoogle Scholar
  10. Colley, C. M., Zwaal, R. F. A., Roelofsen, B., and van Deenen, L. L. M., 1973, Lytic and non-lytic degradation of phospholipids in mammalian erythrocytes by pure phospholipases, Biochim. Biophys. Acta 307: 74.PubMedCrossRefGoogle Scholar
  11. Cremona, T., and Kearney, E. B., 1964, Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. VI. Further purification and properties of the enzyme from beef heart, J. Biol. Chem. 239: 2328.PubMedGoogle Scholar
  12. van Deenen, L. L. M., and de Gier, J., 1974, Lipids of the red cell membrane, in: The Red Blood Cell, Vol. 1, 2nd edition, ( S. M. Surgenor, ed.), pp. 147–211, Academic Press, New York.Google Scholar
  13. Dodge, J. T., Mitchell, C., and Hanahan, D. J., 1963, The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes, Arch. Biochem. Biophys. 100: 119.PubMedCrossRefGoogle Scholar
  14. Duckworth, D. H., Bevers, E. M., Verkleij, A. J., Op den Kamp, J. A. F., and van Deenen, L. L. M., 1974, Action of phospholipase A- and phospholipase C on Escherichia coli, Arch. Biochem. Biophys. 165: 379.PubMedCrossRefGoogle Scholar
  15. Fortes, P. A. G., Allory, J. C., and Lew, V. L., 1973, Suramin: A potent ATPase inhibitor which acts on the inside surface of the sodium pump, Biochim. Biophys. Acta 318: 262.PubMedCrossRefGoogle Scholar
  16. Goerke, J., J., de Gier, and Bonsen, P. P. M., 1971, Silica gel stimulates the hydrolysis of lecithin by phospholipase A, Biochim. Biophys. Acta 248: 245.PubMedCrossRefGoogle Scholar
  17. Gordesky, S. E., and Marinetti, G. V., 1973, The asymmetric arrangement of phospholipids in the human erythrocyte membrane, Biochem. Biophys. Res. Commun. 50: 1027.PubMedCrossRefGoogle Scholar
  18. GuI, S., and Smith, A. D., 1972, Hemolysis of washed human red cells by the combined action of Naja naja phospholipase A2 and albumin, Biochim. Biophys. Acta 288: 237.CrossRefGoogle Scholar
  19. de Haas, G. H., Postema, N. M., Nieuwenhuizen, W., and van Deenen, L. L. M., 1968, Purification and properties of phospholipase A from porcine pancreas, Biochim. Biophys. Acta 159: 103.PubMedCrossRefGoogle Scholar
  20. Hoffman, J. F., 1958, Physiological characteristics of human red blood cell ghosts, J. Gen. Physiol. 42: 9.PubMedCrossRefGoogle Scholar
  21. Hoffman, J. F., 1962, The active transport of sodium by ghosts of human red blood cells, J. Gen. Physiol. 45: 837.PubMedCrossRefGoogle Scholar
  22. Ibrahim, S. A., and Thompson, R. H. S., 1965, Action of phospholipase A on human red cell ghosts and intact erythrocytes, Biochim. Biophys. Acta 99: 331.PubMedCrossRefGoogle Scholar
  23. Juliano, R. L., 1973, The proteins of the erythrocyte membrane, Biochim. Biophys. Acta 300: 341.PubMedCrossRefGoogle Scholar
  24. Low, M. G., Limbrick, A. R., and Finean, J. B., 1973, Phospholipase C (Bacillus cereus) acts only at the inner surface of the erythrocyte membrane? FEBS Lett. 34: 1.PubMedCrossRefGoogle Scholar
  25. Marchesi, V. T., and Andrews, E. P., 1971, Glycoproteins: Isolation from cell membranes with lithium diiodosalicylate, Science 174: 1247.PubMedCrossRefGoogle Scholar
  26. Marchesi, V. T., and Palade, G. E., 1967, The localization of Mg-Na-K-activated ATPase on red cell ghost membranes, J. Cell Biol. 35: 385.PubMedCrossRefGoogle Scholar
  27. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, E. R., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 69: 1445.PubMedCrossRefGoogle Scholar
  28. Martin, K., 1970, The effect of proteolytic enzymes on acetylcholinesterase, the sodium pump and choline transport in human erythrocytes, Biochim. Biophys. Acta 203: 182.PubMedCrossRefGoogle Scholar
  29. Mavis, R. D., Bell, R. M., and Vagelos, P. R., 1972, Effect of phospholipase C hydrolysis of membrane phospholipide on membranous enzymes, J. Biol. Chem. 247: 2835.PubMedGoogle Scholar
  30. Nanninga, N., Tijssen, F. C., and Op den Kamp, J. A. F., 1973, Electron microscopy of Bacillus subtilis protoplast membrane after treatment with phospholipase A2 and phospholipase C, Biochim. Biophys. Acta 298: 184.PubMedCrossRefGoogle Scholar
  31. Op den Kamp, J. A. F., Kauerz, M. T., and van Deenen, L. L. M., 1972, Action of phospholipase A2 and phospholipase C on Bacillus subtilis protoplasts, J. Bacteriol. 112: 1090.Google Scholar
  32. Renooij, W., van Golde, L. M. G., Zwaal, R. F. A., Roelofsen, B., and van Deenen, L. L. M., 1974, Preferential incorporation of fatty acids at the inside of human erythrocyte membranes, Biochim. Biophys. Acta 363: 287.PubMedCrossRefGoogle Scholar
  33. Roelofsen, B., and van Deenen, L. L. M., 1973, Lipid requirement of membrane-bound ATPase. Studies on human erythrocyte ghosts, Eur. J. Biochem. 40: 245.PubMedCrossRefGoogle Scholar
  34. Roelofsen, B., Zwaal, R. F. A., Comfurius, P., Woodward, C. B., and van Deenen, L. L. M., 1971, Action of pure phospholipase A2 and phospholipase C on human erythrocytes and ghosts, Biochim. Biophys. Acta 241: 925.PubMedCrossRefGoogle Scholar
  35. Rottem, S., Hasin, M., and Razin, S., 1973, Differences in susceptibility to phospholipase C of free and membrane-bound phospholipids of Mycoplasma hominis, Biochim. Biophys. Acta 323: 520.PubMedCrossRefGoogle Scholar
  36. Schwoch, G., and Passow, H., 1973, Preparation and properties of human erythrocyte ghosts, Mol. Cell. Biochem. 2: 197.PubMedCrossRefGoogle Scholar
  37. Segrest, J. P., Jackson, R. L., and Marchesi, V. T., 1972, Red cell membrane glycoprotein: Amino acid sequence of an intramembranous region, Biochem. Biophys. Res. Commun. 49: 964.PubMedCrossRefGoogle Scholar
  38. Segrest, J. P., Kahane, I., Jackson, R. L., and Marchesi, V. T., 1973, Major glycoprotein of the human erythrocyte membrane: Evidence for an amphipathic molecular structure, Arch Biochem. Biophys. 155: 167.PubMedCrossRefGoogle Scholar
  39. Stahl, W. L., 1973, Phospholipase C purification and specificity with respect to individual phospholipids and brain microsomal membrane phospholipids, Arch. Biochem. Biophys. 154: 47.PubMedCrossRefGoogle Scholar
  40. Takahashi, T., Sugahara, T., and Ohsaka, A., 1974, Purification of Clostridium perfringens phospholipase C (a-toxin) by affinity chromatography on agarose-linked egg-yolk lipoprotein, Biochim. Biophys. Acta 351: 155.PubMedCrossRefGoogle Scholar
  41. Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kastelijn, D., and van Deenen, L. L. M., 1973, The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy, Biochim. Biophys. Acta 323: 178.PubMedCrossRefGoogle Scholar
  42. Wallach, D. F. H., 1972, The dispositions of proteins in the plasma membranes of animal cells: Analytical approaches using controlled peptidolysis and protein labels, Biochim. Biophys. Acta 265: 61.PubMedCrossRefGoogle Scholar
  43. Zografi, G., Verger, R., and de Haas, G. H., 1971, Kinetic analysis of the hydrolysis of lecithin monolayers by phospholipase A, Chem. Phys. Lipids 7: 185.PubMedCrossRefGoogle Scholar
  44. Zwaal, R. F. A., 1974, The use of pure phospholipases in the study of membrane structure and function, Biochem. Soc. Trans. London 2: 821.Google Scholar
  45. Zwaal, R. F. A., Roelofsen, B., Comfurius, P., and van Deenen, L. L. M., 1971, Complete purification and some properties of phospholipase C from Bacillus cereus, Biochim. Biophys. Acta 233: 474.PubMedCrossRefGoogle Scholar
  46. Zwaal, R. F. A., Roelofsen, B., and Colley, C. M., 1973, Localization of red cell membrane constituents, Biochim. Biophys. Acta 300: 159.PubMedCrossRefGoogle Scholar
  47. Zwaal, R. F. A., Flückiger, R., Moser, S., and Zahler, P., 1974, Lecithinase activities at the external surface of ruminant erythrocyte membranes, Biochim. Biophys. Acta 373: 416.PubMedCrossRefGoogle Scholar
  48. Zwaal, R. F. A., Roelofsen, B., Comfurius, P., and van Deenen, L. L. M., 1975, Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases, Biochim. Biophys. Acta 406: 83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Ben Roelofsen
    • 1
  • Robert F. A. Zwaal
    • 1
  1. 1.Laboratory of BiochemistryState University of UtrechtUtrechtThe Netherlands

Personalised recommendations