Advertisement

Electron Microscopic Methods in Membrane Biology

  • H. P. Zingsheim
  • H. Plattner

Abstract

Modern membranology started exactly half a century ago: In 1925 Fricke published his capacity measurements on erythrocyte suspensions. This led to the conclusion that the cells are bounded by a thin hydrocarbon sheet approximately 50 Å thick. In the same year, applying Langmuir’s (1917) monolayer method, Gorter and Grendel (1925) inferred the arrangement of the lipids in the form of a bilayer within the erythrocyte membrane.

Keywords

Erythrocyte Membrane Osmium Tetroxide Negative Staining Membrane Biology Hydroxypropyl Methacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbe, E., 1873, Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung, Arch. Mikrosk. Anatom Entwicklungsmech. 9: 27.Google Scholar
  2. Abermann, R., and Bachmann, L., 1969, Elektronenmikroskopische Beschattung mit hoher Auflösung, Naturwissenschaften 56: 324.CrossRefGoogle Scholar
  3. Abermann, R., Salpeter, M. M., and Bachmann, L., 1972, High resolution shadowing, in: Principles and Techniques of Electron Microscopy, Biological Applications, Vol. 2, ( M. A. Hayat, ed.), pp. 196–217, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, and Melbourne.Google Scholar
  4. Adams, C. W. M., 1958, Histochemical mechanisms of the Marchi reaction for degenerating myelin, J. Neurochem. 2: 178.PubMedCrossRefGoogle Scholar
  5. Adams, C. W. M., Abdulla, Y. H., and Bayliss, O. B., 1967, Osmium tetroxide as a histochemical and histological reagent, Histochemie 9: 68.PubMedCrossRefGoogle Scholar
  6. Afzelius, B. A., 1962, Chemical fixatives for electron microscopy, in: Interpretation of Ultrastructure, ( R. J. C. Harris, ed.), pp. 1–16, Academic Press, New York and London.Google Scholar
  7. Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., 1975, Mechanisms of cell fusion, Nature (Lond.) 253: 194.CrossRefGoogle Scholar
  8. Ainsworth, S. K., and Karnovsky, M. J., 1972, An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections, J. Histochem. Cytochem. 20: 225.PubMedCrossRefGoogle Scholar
  9. Allinson, D. L., 1975, Environmental devices in electron microscopy, in: Principles and Techniques of Electron Microscopy, Biological Applications, Vol. 5, ( M. A. Hayat, ed.), pp. 62–113, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, and Melbourne.Google Scholar
  10. Albuquerque, E. X., Barnard, E. A., Porter, C. W., and Warnick, J. E., 1974, The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates, Proc. Natl. Acad. Sci. USA 71: 2818.PubMedCrossRefGoogle Scholar
  11. Altman, P. L., and Dittmer, D. S., 1972, Biology Data Book, 2nd ed., Vol. I, Federation of the American Society of Experimental Biologists, Bethesda, Maryland.Google Scholar
  12. Altmann, R., 1894, Die Elementarorganismen und ihre Beziehungen zu den Zellen, 2nd ed., Veit, Leipzig, Germany.Google Scholar
  13. Anderson, O. R., Roels, O. A., Dreher, K. D., and Schulman, J. H., 1967, The stability and structure of mixed lipid monolayers and bilayers. II. The effect of retinol and a-tocopherol on the structure and stability of lipid bilayers, J. Ultrastruct. Res. 19: 600.PubMedCrossRefGoogle Scholar
  14. Anderson, W. A., Bara, G., and Seligman, A. M., 1975, The ultrastructural localization of cytochrome oxidase via cytochrome c, J. Histochem. Cytochem. 23: 13.PubMedCrossRefGoogle Scholar
  15. Andrews, E. H., 1968, Fracture in Polymers, Oliver and Boyd, Edinburgh, London.Google Scholar
  16. Appleton, T. C., 1973, Cryoultramicrotomy, possible applications in cytochemistry, in: Electron Microscopy and Cytochemistry, ( E. Wisse, W. T. Daems, and P. Van Duijn, eds.), pp. 229–241, North-Holland Publishing Company, Amsterdam, London.Google Scholar
  17. Aronson, J. F., Pietra, G. G., and Fishman, A. P., 1973, Soluble hemin compounds as ultrastructural tracers, J. Histochem. Cytochem. 21: 1047.PubMedCrossRefGoogle Scholar
  18. Ashford, A. E., Allaway, W. G., and McCully, M. E., 1972, Low temperature embedding in glycol methacrylate for enzyme histochemistry in plant and animal tissues. J. Histochem. Cytochem. 20: 986.PubMedCrossRefGoogle Scholar
  19. Ashworth, C. T., Leonard, J. S., Eigenbrodt, E. H., and Wrightsman, F. J., 1966, Hepatic intracellular osmiophilic droplets. Effect of lipid solvents during tissue preparation, J. Cell Biol. 31: 301.PubMedCrossRefGoogle Scholar
  20. Aso, C., and Aito, Y., 1962, Studies on the polymerization of bifunctional monomers. II. Polymerization of glutaraldehyde. Macromol. Chem. 58: 195.CrossRefGoogle Scholar
  21. Avrameas, S., 1968, Détection d’anticorps et d’antigènes à l’aide d’enzymes, Bull. Soc. Chim. Biol. 50: 1169.PubMedGoogle Scholar
  22. Avrameas, S., 1969, Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugate for the detection of antigens and antibodies, Immunochemistry 6: 43.PubMedCrossRefGoogle Scholar
  23. Avrameas, S., 1972, Enzyme markers: their linkage with proteins and use in immunohistochemistry, Histochem. J. 4: 321.PubMedCrossRefGoogle Scholar
  24. Bachmann, L., and Salpeter, M. M., 1965, Autoradiography with the electron microscope. A quantitative evaluation, Lab. Invest. 14: 1041.PubMedGoogle Scholar
  25. Bachmann, L., and Schmitt, W. W., 1971, Improved cryofixation applicable to freeze-etching. Proc. Natl. Acad. Sci. USA 68: 2149.PubMedCrossRefGoogle Scholar
  26. Bachmann, L., and Schmitt-Fumian, W. W., 1973a, Spray-freeze-etching of dissolved macromolecules, emulsions and subcellular components, in: Freeze-Etching, Techniques and Applications, ( E. L. Benedetti and P. Favard, eds.), pp. 63–72, Société Française de Microscopie Électronique, Paris.Google Scholar
  27. Bachmann, L., and Schmitt-Fumian, W. W., 1973b, Spray-freezing and freeze-etching, in: Freeze-Etching, Techniques and Applications, ( E. L. Benedetti and P. Favard, eds.), pp. 73–79, Societé Française de Microscopie Électronique, Paris.Google Scholar
  28. Bachmann, L., and Sitte, P., 1958, Über Schnittdickenbestimmung nach dem TolanskyVerfahren, Fourth International Conference on Electron Microscopy, Vol. II, (W. Bargmann, D. Peters, C. Wolpers, eds.), pp. 75–79, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1960.Google Scholar
  29. Bachmann, L., Abermann, R., and Zingsheim, H. P., 1969, Hochauflösende Gefrierätzung, Histochemie 20: 133.PubMedCrossRefGoogle Scholar
  30. Bachmann, L., Schmitt, W. W., and Plattner, H., 1972, Improved cryofixation: Demonstrated on freeze-etched solutions, cell fractions and unicellular organisms, in: Proceedings of the Fifth European Conference on Electron Microscopy, ( V. E. Cosslett, ed.), pp. 244–245, The Institute of Physics, London, Bristol.Google Scholar
  31. Bachmann, L., Fritzmann, H., and Schmitt-Fumian, W. W., 1974a, Molecular and particle weight determination by counting, in: Proceedings of the Eight International Congress on Electron Microscopy Canberra, Vol. II, ( J. V. Sanders and D. J. Goodchild, eds.), pp. 18–19, The Australian Academy of Science, Canberra.Google Scholar
  32. Bachmann, L., Junger, E., Lederer, K., and Schmitt-Fumian, W. W., 19746, Size and shape of hydrated protein molecules, in: Proceedings of the International Congress on Electron Microscopy Canberra, Vol. II, (J. V. Sanders and D. J. Goodchild, eds.), pp. 40–41, The Australian Academy of Science, Canberra.Google Scholar
  33. Bachmann, L., Orr, W. H., Rhodin, T. N., and Siegel, B. M., 1960, Determination of surface structure using ultrahigh vacuum replication, J. Appl. Phys. 31: 1458.CrossRefGoogle Scholar
  34. Bahr, G. F., 1954, Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances, Exp. Cell Res. 7: 457.PubMedCrossRefGoogle Scholar
  35. Bahr, G. F., 1955, Continued studies about the fixation with osmium tetroxide. Electron stains IV, Exp. Cell Res. 9: 277.PubMedCrossRefGoogle Scholar
  36. Baker, J. R., 1965, The fine structure produced in cells by primary fixatives. 2. Potassium dichromate, Quart. J. Microsc. Sci. 106: 15.Google Scholar
  37. Balyuzi, H. H. M., and Burge, R. E., 1970, Structure in embedding media for electron microscopy, Nature (Loud.) 227: 489.CrossRefGoogle Scholar
  38. Bank, H., and Mazur, P., 1972, Relation between ultrastructure and viability of frozen-thawed chinese hamster tissue-culture cells, Exp. Cell Res. 71: 441.PubMedCrossRefGoogle Scholar
  39. Bartl, P., and Bernhard, W., 1966, Essais d’inclusion de tissus dans des gels de plastique fortement hydratés, J. Microscopie 5: 51.Google Scholar
  40. Bassett, G. A., Menter, J. W., and Pashley, D. W., 1959, The nucleation, growth, and microstructure of thin films, in: Structure and Properties of Thin Films, ( C. A. Neugebauer, J. B. Newkirk, and D. A. Vermileyea, eds.), John Wiley amp Sons, Inc., New York.Google Scholar
  41. Baudhuin, P., 1974, Morphometry of subcellular fractions, in: Methods in Enzymology, Vol. XXXII, ( S. Fleischer and L. Packer, eds.), pp. 3–20, Academic Press, New York, San Francisco, London.Google Scholar
  42. Becker, R., 1959, Diplomarbeit, Technische Hochschule, Karlsruhe, Germany.Google Scholar
  43. Beer, M., Frank, J., Hanszen, K.-J., Kellenberger, E., and Williams, R. C., 1975, The possibilities and prospects of obtaining high-resolution information (below 30 A) on biological material using the electron microscope. Some comments and reports inspired by an EMBO workshop held at Gais, Switzerland, October 1973, Quart. Rev. Bioph. 7: 211.CrossRefGoogle Scholar
  44. Benedetti, E. L., and Emmelot, P., 1968, Structure and function of plasma membranes isolated from liver, in: The Membranes, ( A. J. Dalton and F. Haguenau, eds.), pp. 33–120, Academic Press, New York and London.Google Scholar
  45. Benedetti, E. L., and Favard, P. (eds.), 1973, Freeze-Etching. Techniques and Applications, Société Française de Microscopie Électronique, Paris.Google Scholar
  46. Bennett, G., Leblond, C. P., and Haddad, A., 1974, Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labeled frucose injection into rats, J. Cell Biol. 60: 258.PubMedCrossRefGoogle Scholar
  47. Bennett, M. V. L., Spira, M. E., and Pappas, G. D., 1972, Properties of electrotonic junctions between embryonic cells of Fundulus, Del,. Biol. 29: 419.CrossRefGoogle Scholar
  48. Bernhard, W., and Viron, A., 1971, Improved techniques for the preparation of ultrathin frozen sections, J. Cell Biol. 49: 731.PubMedCrossRefGoogle Scholar
  49. Berthet, J., Berthet, L., Appelmans, F., and De Duve, C., 1951, Tissue fractionation studies. 2. The nature of the linkage between acid phosphatase and mitochondria in rat-liver tissue, Biochem. J. 50: 182.PubMedGoogle Scholar
  50. Berzborn, R. J., Kopp, F., and Mühlethaler, K., 1974, Mobility of chloroplast coupling factor 1 (CF1) at the thylakoid surface as revealed by freeze-etching after antibody labeling, Z. Naturforsch. 29C: 694.Google Scholar
  51. Biava, C. G., and Shelley, S., 1968, Extraction of tissue lipid components during processing for electron microscopy, J. Cell Biol. 39: 15a.Google Scholar
  52. Blackett, N. M., and Parry, D. M., 1973, A new method for analyzing electron microscope autoradiographs using hypothetical grain distributions, J. Cell Biol. 57: 9.PubMedCrossRefGoogle Scholar
  53. Blaurock, A. E., and Stoeckenius, W., 1971, Structure of the purple membrane, Nature (London) New Biol. 233: 152.CrossRefGoogle Scholar
  54. Blodgett, K. B., 1935, Films built by depositing successive monomolecular layers on a solid surface, J. Am. Chem. Soc. 57: 1007.CrossRefGoogle Scholar
  55. Bowes, J. H., and Cater, C. W., 1968, The interaction of aldehydes with collagen, Biochim. Biophys. Acta 168: 341.Google Scholar
  56. Bownds, D., and Gaide-Huguenin, A. C., 1970, Rhodopsin content of frog photoreceptor outer segments, Nature (Lond.) 225: 870.Google Scholar
  57. Bradley, D. E., 1958, Simultaneous evaporation of platinum and carbon for possible use in high resolution shadow-casting for the electron microscope, Nature (Lond.) 181: 875.CrossRefGoogle Scholar
  58. Branton, D., 1966, Fracture faces of frozen membranes, Proc. Natl. Acad. Sci. USA 55: 1048.PubMedCrossRefGoogle Scholar
  59. Branton, D., 1967, Fracture faces of frozen myelin, Exp. Cell Res. 45: 703.PubMedCrossRefGoogle Scholar
  60. Branton, D., 1969, Membrane structure, Ann. Rev. Plant Physiol. 20: 209.CrossRefGoogle Scholar
  61. Branton, D., 1971, Freeze-etching studies of membrane structure, Philos. Trans. R. Soc. London, Ser. B 261: 133.PubMedCrossRefGoogle Scholar
  62. Branton, D., and Park, R. B., 1967, Subunits in chloroplast lamellae, J. Ultrastruct. Res. 19: 283.PubMedCrossRefGoogle Scholar
  63. Branton, D. and Southworth, D., 1967, Fracture faces of frozen Chlorella and Saccharomyces cells, Exp. Cell. Res. 47: 618.CrossRefGoogle Scholar
  64. Brenner, S., and Horne, R. W., 1959, A negative staining method for high resolution electron microscopy of viruses, Biochim. Biophys. Acta 34: 103.PubMedCrossRefGoogle Scholar
  65. Bretscher, M. S., and Raff, M. C., 1975, Mammalian plasma membranes, Nature (Lond.) 258: 43.CrossRefGoogle Scholar
  66. Buchheim, W., 1972, Zur Gefrierfixierung wässriger Lösungen, Naturwissenschaften 59: 121.CrossRefGoogle Scholar
  67. Bullivant, S., 1965, Freeze substitution and supporting techniques, Lab. Invest. 14: 1178.PubMedGoogle Scholar
  68. Bullivant, S., 1970, Present status of freezing techniques, in: Some Biological Techniques in Electron Microscopy, ( D. F. Parsons, ed.), pp. 101–146, Academic Press, New York.Google Scholar
  69. Bullivant, S. and Ames, A., 1966, A simple freeze-fracture replication method for electron microscopy, J. Cell. Biol. 29: 435.PubMedCrossRefGoogle Scholar
  70. Buschmann, R. J., and Taylor, A. B., 1971, The effect of 0°C and 2,4-DNP on the uptake of micellar fatty acid, on the extraction of absorbed lipid during electron microscopy processing, and on the ultrastructure of everted jejunum, J. Ultrastruct. Res. 35: 98.PubMedCrossRefGoogle Scholar
  71. Capaldi, R. A., 1973, A cross-linking study of the beef erythrocyte membrane: Extensive interaction of all the proteins of the membrane except for the glycoproteins, Biochim. Biophys. Res. Commun. 50: 656.CrossRefGoogle Scholar
  72. Caro, L. G., and Palade, G. E., 1964, Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study, J. Cell Biol. 20: 473.PubMedCrossRefGoogle Scholar
  73. Caro, L. G., and Van Tubergen, R. P., 1962, High-resolution autoradiography. I. Methods, J. Cell Biol. 15: 173.PubMedCrossRefGoogle Scholar
  74. Carraway, K. L., and Koshland, D. E., 1972, Carbodiimide modification of proteins, in: Methods in Enzymology, Vol. XXV, ( C. H. W. Hirs and S. N. Timasheff, eds.), pp. 616–623, Academic Press, New York, London.Google Scholar
  75. Carstensen, E. L., Aldridge, W. G., Child, S. Z., Sullivan, P., and Brown, H. H., 1971, Stability of cells fixed with glutaraldehyde and acrolein, J. Cell Biol. 50: 529.PubMedCrossRefGoogle Scholar
  76. Caspar, D. L. D., and Kirschner, D. A., 1971, Myelin membrane structure at 10 A resolution, Nature (London) New Biol. 231: 46.CrossRefGoogle Scholar
  77. Cecil, R., and Ogston, A. G., 1951, Determination of sedimentation and diffusion constants of horse-radish peroxidase, Biochem. J. 49: 105.PubMedGoogle Scholar
  78. Chalcroft, J. P., and Bullivant, S., 1970, An interpretation of liver cell membrane and junction structure based on observation of freeze fracture replicas of both sides of the fracture, J. Cell Biol. 47: 49.PubMedCrossRefGoogle Scholar
  79. Chandler, J. A., 1972, An introduction to analytical electron microscopy, Micron 3: 85.CrossRefGoogle Scholar
  80. Chopra, H. C., Shibley, G. P., and Walling, M. J., 1970, Electron microscopic cytochemistry of Herpes simplex virus using enzyme-extraction and autoradiography, J. Microscopie 9: 167.Google Scholar
  81. Christensen, A. K., 1969, A way to prepare frozen thin sections of fresh tissue for electron microscopy, in: Autoradiography of Diffusable Substances, ( L. J. Roth and W. E. Stumpf, eds.), pp. 349–362, Academic Press, New York.Google Scholar
  82. Christensen, A. K., 1971, Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver, J. Cell Biol. 51: 772.PubMedCrossRefGoogle Scholar
  83. Clark, A. W., and Branton, D., 1968, Fracture faces in frozen outer segments from the guinea pig retina, Z. Zellforsch. Mikrosk. Anat. 91: 586.PubMedCrossRefGoogle Scholar
  84. Claude, P., and Goodenough, D. A., 1973, Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia, J. Cell Biol. 58: 390.PubMedCrossRefGoogle Scholar
  85. Coleman, J. R., and Terepka, A. R., 1974, Preparatory methods for electron probe analysis, in: Principles and Techniques of Electron Microscopy. Biological Applications, Vol. 4, ( M. A. Hayat, ed.), pp. 159–207, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  86. Coleman, R., 1973, Membrane-bound enzymes and membrane ultrastructure, Biochim. Biophys. Acta 300: 1.PubMedCrossRefGoogle Scholar
  87. Collin, R. J., and Griffith, W. P., 1974, Mechanism of tissue component staining by osmium tetroxide, J. Histochem. Cytochem. 22: 992.PubMedCrossRefGoogle Scholar
  88. Collin, R., Griffith, W. P., Phillips, F. L., and Skapski, A. C., 1973, Staining and fixation of unsaturated membrane lipids by osmium tetroxide: Crystal structure of a model osmium (VI) intermediate, Biochim. Biophys. Acta 320: 745.PubMedCrossRefGoogle Scholar
  89. Constantin, L. L., Franzini-Armstrong, C., and Podolsky, R. J., 1965, Localization of calcium-accumulating structures in striated muscle fibers, Science 147: 158.CrossRefGoogle Scholar
  90. Cook, G. M. W., and Stoddart, R. W., 1973, Surface Carbohydrates of the Eukaryotic Cell, Academic Press, London, New York.Google Scholar
  91. Coons, A. H., and Kaplan, M. H., 1950, Localization of antigen in tissue cells, J. Exp. Med. 91: 1.PubMedCrossRefGoogle Scholar
  92. Cope, G. H., 1968, Low-temperature embedding in water-miscible methacrylates after treatment with antifreezes, J. R. Microsc. Soc. 88: 235.PubMedCrossRefGoogle Scholar
  93. Cope, G. H., and Williams, M. A., 1968, Quantitative studies on neutral lipid preservation in electron microscopy, J. R. Microsc. Soc. 88: 259.PubMedCrossRefGoogle Scholar
  94. Cornelisse, C. J., and Van Duijn, P., 1974, A new method for the investigation of the capture reaction in phosphatase cytochemistry. III. Effects of the composition of the incubation medium on the trapping of phosphate ions in a model system, J. Histochem. Cytochem. 22: 110.PubMedCrossRefGoogle Scholar
  95. Courtoy, R., Boniver, J., and Simar, L. J., 1974, A cetylpyridinium chloride (CPC) and ferric thiocyanate (FeTh) method for polyanion demonstration on thin sections for electron microscopy, Histochemie 42: 133.CrossRefGoogle Scholar
  96. Crewe, A. V., 1970, The current state of high resolution scanning electron microscopy, Quart. Rev. Bioph. 3: 137.CrossRefGoogle Scholar
  97. Crewe, A. V., and Wall, J., 1970, A scanning microscope with 5 A resolution, J. Mol. Biol. 48: 375.PubMedCrossRefGoogle Scholar
  98. Criegee, R., 1936, Osmiumsäure-Ester als Zwischenprodukte bei Oxidationen, Justus Liebigs Ann. Chem. 522: 75.CrossRefGoogle Scholar
  99. Criegee, R., 1938, Organische Osmiumverbindungen, Z. Angew. Chem. 51: 519.CrossRefGoogle Scholar
  100. Criegee, R., Marchand, B., and Wannowius, H., 1942, Zur Kenntnis der organischen Osmium-verbindungen. I1. Mitteilung, Justus Liebig’s Ann. Chem. 550: 99.CrossRefGoogle Scholar
  101. Dalton, A. J., 1955, A chrome—osmium fixative for electron microscopy, Anat. Rec. 121: 281.Google Scholar
  102. Danielli, J. F., and Dayson, H., 1935, A contribution to the theory of permeability of thin films, J. Cell. Physiol. 5: 495.CrossRefGoogle Scholar
  103. Daniels, M. P., and Vogel, Z., 1975, Immunoperoxidase staining of a-bungarotoxin binding sites in muscle endplates shows distribution of acetylcholine receptors, Nature (Lund.) 254: 339.CrossRefGoogle Scholar
  104. Danon, D., Goldstein, L., Marikovsky, Y., and Skutelsky, E., 1972, Use of cationized ferritin as a label of negative charges on cell surfaces, J. Ultrastruct. Res. 38: 500.PubMedCrossRefGoogle Scholar
  105. Davies, G. E., and Stark, G. R., 1970, Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins, Proc. Natl. Acad. Sci. USA 66: 651.PubMedCrossRefGoogle Scholar
  106. Davis, D. A., Wasserkrug, H. L., Heyman, I. A., Padmanabhan, K. C., Seligman, G. A., Plapinger, R. E., and Seligman, A. M., 1972, Comparison of ultrastructural cholinesterase demonstration in the motor endplate with a-acetylthiol-m-toluenediazonium ion and 3-acetoxy-5-indolediazonium ion, J. Histochem. Cytochem. 20: 161.Google Scholar
  107. Davis, P., and Tabor, B. E., 1963, Kinetic study of the crosslinking of gelatin by formaldehyde and glyoxal, J. Polymer Sci. 11: 799.Google Scholar
  108. Davisson, C., and Germer, L. H., 1927, Diffraction of electrons by a crystal of nickel, Phys. Rev. 30: 705.CrossRefGoogle Scholar
  109. Davy, J. G., and Branton, D., 1970, Subliming ice surfaces: Freeze-etch electron microscopy, Science 168: 1216.PubMedCrossRefGoogle Scholar
  110. Dayhoff, M. O., 1972, Atlas of Protein Sequence and Structure, Vol. 5, National Biomedical Research Foundation, Washington (D. C. ).Google Scholar
  111. Deamer, D. W., and Branton, D., 1967, Fracture planes in an ice-bilayer model membrane system, Science 158: 655.PubMedCrossRefGoogle Scholar
  112. Deamer, D. W., Leonard, R., Tardieu, A., and Branton, D., 1970, Lamellar and hexagonal lipid phases visualized by freeze-etching, Biochim. Biophys. Acta 219: 47.PubMedCrossRefGoogle Scholar
  113. De Broglie, L., 1923, Waves and quanta, Nature (Lond.) 112: 540.CrossRefGoogle Scholar
  114. De Broglie, L., 1924, A tentative theory of light quanta, Philos. Mag. 47: 446.CrossRefGoogle Scholar
  115. De Martino, C., Stefanini, M., Bellocci, M., and Quintarelli, G., 1972, Osmium tetroxidepicric acid: a new fixation technique in electron microscopy, J. Submicrosc. Cytol. 4: 111.Google Scholar
  116. Dempsey, G. P., Bullivant, S., and Watkins, W. B., 1973, Endothelial cell membranes: Polarity of particles as seen by freeze-fracturing, Science 179: 190.PubMedCrossRefGoogle Scholar
  117. Dermer, G. B., 1973, Ultrastructural and certain cytochemical aspects of plasma membranes within glycol methacrylate sections, J. Ultrastruct. Res. 42: 221.PubMedCrossRefGoogle Scholar
  118. Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E., 1971, Ferricytochrome e. 1. General features of the horse and bonito proteins at 2.8 A resolution, J. Biol. Chem. 246: 1511.PubMedGoogle Scholar
  119. Di Pauli, G., and Brdiczka, D., 1974, Localization of glycoproteins with erythrocyte membranes of sheep. A freeze-etching and biochemical study, Biochim. Biophys. Acta 352: 252.PubMedCrossRefGoogle Scholar
  120. Dreher, K. D., Schulman, J. H., Anderson, O. R., and Roels, O. A., 1967, The stability and structure of mixed lipid monolayers and bilayers. I. Properties of lipid and lipoprotein monolayers on OsO, solutions and the role of cholesterol, retinol and tocopherol in stabilizing lecithin monolayers, J. Ultrastruct. Res. 19: 586.PubMedCrossRefGoogle Scholar
  121. Duncan, C. J., 1974, Effects of a water-soluble carbodiimide on the osmotic fragility and ion permeability of erythrocytes, Biochem. Pharmacol. 23: 2773.PubMedCrossRefGoogle Scholar
  122. Dunia, I., and Benedetti, E. L., 1974, Ultrastructural and biochemical characterization of junctional complexes in animal cells, in: Proceedings of the Eighth International Congress on Electron Microscopy, Vol. 11, ( J. V. Sanders and D. J. Goodchild, eds.), pp. 230–231, The Australian Academy of Science, Canberra.Google Scholar
  123. Dunlop, W. F., and Robards, A. W., 1972, Some artifacts of the freeze-etching technique, J. Ultrastruct. Res. 40: 391.PubMedCrossRefGoogle Scholar
  124. Dupont, Y., Gabriel, A., Chabre, M., Gulik-Krzywicki, T., and Shechter, E., 1972, Use of a new detector for X-ray diffraction and kinetics of the ordering of the lipids in E. coli membranes and model systems, Nature (Land.) 238: 331.CrossRefGoogle Scholar
  125. Dutton, A., Adams, M., and Singer, S. J., 1966, Bifunctional imidoesters as cross-linking reagents, Biochem. Biophys. Res. Commun. 23: 730.PubMedCrossRefGoogle Scholar
  126. Echlin, P., 1973, Scanning microscopy at low temperature, in: Freeze-Etching. Techniques and Applications, ( E. L. Benedetti and P. Favard, eds.), pp. 211–222, Société Française de Microscopie Électronique, Paris.Google Scholar
  127. Edidin, M., and Fambrough, D., 1973, Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens, J. Cell Biol. 57: 2737.CrossRefGoogle Scholar
  128. Ellar, D. J., Munoz, E., and Salton, M. R. J., 1971, The effect of low concentrations of glutaraldehyde on Micrococcus lysodeikticus membranes: Changes in the release of membrane-associated enzymes and membrane structure, Biochim. Biophys. Acta 225: 140.PubMedCrossRefGoogle Scholar
  129. Engelman, D. M., 1969, Surface area per lipid molecule in the intact membrane of the human red cell, Nature (Lond.) 223: 1279.CrossRefGoogle Scholar
  130. Ernst, S. A., 1972a, Transport adenosine triphosphatase cytochemistry. 1. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain—sensitive, potassium-dependent phosphatase activity in the avian salt gland, J. Histochem. Cytochem. 20: 13.PubMedCrossRefGoogle Scholar
  131. Ernst, S. A., 1972b, Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland, J. Histochem. Cytochem. 20: 23.PubMedCrossRefGoogle Scholar
  132. Ernst, S. A., 1975, Transport ATPase cytochemistry: Ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex, J. Cell Biol. 66: 586.PubMedCrossRefGoogle Scholar
  133. Ernster, L., and Kuylenstierna, B., 1970, Outer membrane of mitochondria, in: Membranes of Mitochondria and Chloroplasts, ( E. Racker, ed.), pp. 172–212, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  134. Fahimi, H. D., and Drochmans, P., 1968, Purification of glutaraldehyde. Its significance for preservation of acid phosphatase activity, J. Histochem. Cytochem. 16: 199.PubMedCrossRefGoogle Scholar
  135. Farquhar, M. G., and Palade, G. E., 1963, Junctional complexes in various epithelia, J. Cell Biol. 17: 375.PubMedCrossRefGoogle Scholar
  136. Feder, N., 1970, A heme-peptide as an ultrastructural tracer, J. Histochem. Cytochem. 18: 911.PubMedCrossRefGoogle Scholar
  137. Feder, N., 1971, Microperoxidase. An ultrastructural tracer of low molecular weight, J. Cell Biol. 51: 339.PubMedCrossRefGoogle Scholar
  138. Feder, N., and Sidman, R. L., 1958, Methods and principles of fixation by freeze-substitution, J. Biophys. Biochem. Cytol. 4: 593.PubMedCrossRefGoogle Scholar
  139. Feldherr, C. M., 1974, The binding characteristics of the nuclear annuli, Exp. Cell Res. 85: 271.PubMedCrossRefGoogle Scholar
  140. Fernandez-Moran, H., 1960, Low temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II, Ann. N. Y. Acad. Sci. 85: 689.PubMedCrossRefGoogle Scholar
  141. Fernandez-Moran, H., 1962, Cell-membrane ultrastructure. Low-temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems, Circulation 26: 1039.PubMedCrossRefGoogle Scholar
  142. Fernandez-Moran, H., and Finean, J. B., 1957, Electron microscope and low-angle x-ray diffraction studies of the nerve myelin sheath, J. Biophys. Biochem. Cytol. 3: 725.PubMedCrossRefGoogle Scholar
  143. Fernandez-Moran, H., Oda, T., Blair, P. V., and Green, D. E., 1964, A macromolecular repeating unit of mitochondrial structure and function. Correlated electron microscopic and biochemical studies of isolated mitochondria and submitochondrial particles of beef heart muscle, J. Cell Biol. 22: 63.PubMedCrossRefGoogle Scholar
  144. Fertuck, H. C., and Salpeter, M. M., 1974a, Localization of acetylcholine receptor by 125I-labeled a-bungarotoxin binding at mouse motor endplates, Proc. Natl. Acad. Sci. USA 71: 1376.PubMedCrossRefGoogle Scholar
  145. Fertuck, H. C., and Salpeter, M. M., 1974b, Sensitivity in electron microscope autoradiography for 125I, J. Histochem. Cytochem. 22: 80.Google Scholar
  146. Fettiplace, R., Andrews, D. M., and Haydon, D. A., 1971, The thickness, composition and structure of some lipid bilayers and natural membranes, J. Membr. Biol. 5: 277.CrossRefGoogle Scholar
  147. Finean, J. B., 1959, Electron microscope and X-ray diffraction studies of a saturated synthetic phospholipide, J. Biophys. Biochem. Cytol. 6: 123.PubMedCrossRefGoogle Scholar
  148. Finean, J. B., Bramley, T. A., and Coleman, R., 1971, Lipid layer in cell membranes, Nature (Gond.) 229: 114.Google Scholar
  149. Firth, J. A., 1974, Problems of specificity in the use of a strontium capture technique for the cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase in mammalian renal tubules, J. Histochem. Cytochem. 22: 1163.PubMedCrossRefGoogle Scholar
  150. Fleischer, S., Fleischer, B., and Stoeckenius, W., 1967, Fine structure of lipid-depleted mitochondria, J. Cell Biol. 32: 193.PubMedCrossRefGoogle Scholar
  151. Flitney, F. W., 1966, The time course of the fixation of albumin by formaldehyde, glutaraldehyde, acrolein and other higher aldehydes, J. R. Microsc. Soc. 85: 353.CrossRefGoogle Scholar
  152. Forssmann, W. G., Siegrist, G., Orci, L., Girardier, L., Pictet, R., and Rouiller, C., 1967, Fixation par perfusion pour la microscopie électronique. Essai de généralisation. J. Microscopie 6: 279.Google Scholar
  153. Fraenkel-Conrat, H., and Mecham, D. K., 1949, The reaction of formaldehyde with proteins. VII. Demonstration of intermolecular cross-linking by means of osmotic pressure measurements, J. Biol. Chem. 177: 477.PubMedGoogle Scholar
  154. Fraenkel-Conrat, H., and Olcott, H. S., 1948a, The reaction of formaldehyde with proteins. V. Cross-linking between amino and primary amide or guanidyl groups, J. Ani. Chem. Soc. 70: 2673.CrossRefGoogle Scholar
  155. Fraenkel-Conrat, H., and Olcott, H. S., 19486, Reaction of formaldehyde with proteins. VI. Cross-linking of amino groups with phenol, imidazole or indole groups, J. Biol. Chem. 174: 827.Google Scholar
  156. Franke, W. W., 1970, Universality of the nuclear pore complex structure, Z. Zellforsch. mikrosk. Anat. 105: 405.PubMedCrossRefGoogle Scholar
  157. Frasca, J. M., and Parks, V. R., 1965, A routine technique for double-staining ultrathin sections using uranyl and lead salts, J. Cell biol. 25: 157.PubMedCrossRefGoogle Scholar
  158. Freeman, J. A., and Spurlock, B. O., 1962, A new epoxy embedment for electron microscopy, J. Cell Biol. 13: 437.PubMedCrossRefGoogle Scholar
  159. French, D., and Edsall, J. T., 1945, The reaction of formaldehyde with amino acids and proteins, Adv. Protein Chem. 2: 277.CrossRefGoogle Scholar
  160. Fricke, H., 1925, The electrical capacity of suspensions of red blood corpuscles, Physical Rev. 26: 682.CrossRefGoogle Scholar
  161. Friend, D. S., and Gilula, N. B., 1972, Variations in tight and gap junctions in mammalian tissues, J. Cell Biol. 53: 758.PubMedCrossRefGoogle Scholar
  162. Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell Sci. 7: 319.PubMedGoogle Scholar
  163. Furcht, L. T., and Scott, R. E., 1974, Influence of cell cycle and cell movement on the distribution of intramembranous particles in contact-inhibited and transformed cells, Exp. Cell Res. 88: 311.PubMedCrossRefGoogle Scholar
  164. Furcht, L. T., and Scott, R. E., 1975, Modulation of the distribution of plasma membrane intramembranous particles in contact-inhibited and transformed cells, Biochirn. Biophys. Acta 401: 213.CrossRefGoogle Scholar
  165. Gage, P. W., and Eisenberg, R. S., 1967, Action potentials without contraction in frog skeletal muscle fibers with disrupted transverse tubules, Science 158: 1702.PubMedCrossRefGoogle Scholar
  166. Garber, M. P., and Steponkus, P. L., 1974, Identification of chloroplast coupling factor by freeze-etching and negative-staining techniques, J. Cell Biol. 63: 24.PubMedCrossRefGoogle Scholar
  167. Garfield, R. E., Henderson, R. M., and Daniel, E. E., 1972, Evaluation of the pyroantimonate technique for localization of tissue sodium, Tissue amp Cell 4: 575.CrossRefGoogle Scholar
  168. Gasic, G. J., Berwick, L., and Sorrentino, M., 1968, Positive and negative colloidal iron as cell surface electron stains, Lab. Invest. 18: 63.PubMedGoogle Scholar
  169. Gaylarde, P., and Sarkany, I., 1968, Ruthenium tetroxide for fixing and staining cytoplasmic membranes, Science 161: 1157.PubMedCrossRefGoogle Scholar
  170. Geiselman, C. W., and Burke, C. N., 1973, Exact anhydride: epoxy percentages for araldite and araldite-epon embedding, J. Ultrastruct. Res. 43: 220.PubMedCrossRefGoogle Scholar
  171. Gibbons, I. R., 1959, An embedding resin miscible with water for electron microscopy, Nature (Land.) 184: 375.CrossRefGoogle Scholar
  172. Giesbrecht, P., 1968, Zur Darstellung der DNS von Bakterien und plastischer biologischer Strukturen mit Hilfe der Gefrierätzung. Zentralbi. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. Orig. 207: 198.Google Scholar
  173. Gigg, R., and Payne, S., 1969, The reaction of glutaraldehyde with tissue lipids, Chen. Phys. Lipids 3: 292.CrossRefGoogle Scholar
  174. Gilby, A. R., and Alexander, A. E., 1956, Oxidation reactions in monolayers of long-chain unsaturated compounds, Aus. J. Chem. 9: 347.CrossRefGoogle Scholar
  175. Gillett, R., and Gull, K., 1972, Glutaraldehyde—its purity and stability, Histochemie 30: 162.PubMedCrossRefGoogle Scholar
  176. Gilula, N. B., and Satir, P., 1972, The ciliary necklace. A ciliary membrane specialization, J. Cell Biol. 53: 494.PubMedCrossRefGoogle Scholar
  177. Glaeser, R. N., 1971, Limitations to significant information in biological electron microscopy as a result of radiation damage, J. Ultrastruct. Res. 36: 466.PubMedCrossRefGoogle Scholar
  178. Glaser, M., Simpkins, H., Singer, S. J., Sheetz, M., and Chan, S. 1., 1970, On the interactions of lipids and proteins in the red blood cell membrane, Proc. Natl. Acad. Sci. USA 65: 721.PubMedCrossRefGoogle Scholar
  179. Glauert, A. M., 1965, The fixation and embedding of biological specimens, in: Techniques for Electron Microscopy, ( D. H. Kay, ed.), pp. 166–212, F. A. Davies Comp., Philadelphia.Google Scholar
  180. Glauert, A. M., 1975, Fixation, Dehydration and Embedding of Biological Specimens, North-Holland Publishing Company, Amsterdam, Oxford.Google Scholar
  181. Glauert, A. M., and Glauert, R. H., 1958, Araldite as an embedding medium for electron microscopy, J. Biophys. Biochem. Cytol. 4: 191.PubMedCrossRefGoogle Scholar
  182. Glauert, A. M., Rogers, G. E., and Glauert, R. H., 1956, A new embedding medium for electron microscopy, Nature (Lond.) 178: 803.CrossRefGoogle Scholar
  183. Glover, A. J., and Garvitch, Z. S., 1974, The freezing rate of freeze-etch specimens for electron microscopy, Cryobiol. 11: 248.CrossRefGoogle Scholar
  184. Godin, D. V., and Schrier, S. L., 1970, Mechanism of inactivation of erythrocyte membrane adenosine triphosphatase by carbodiimides, Biochemistry 9: 4068.PubMedCrossRefGoogle Scholar
  185. Goff, C. G., and Oster, M. O., 1974, Formation of 235-nanometer absorbing substance during glutaraldehyde fixation, J. Histochem. Cytochem. 22: 913.PubMedCrossRefGoogle Scholar
  186. Gonatas, N. K., Stieber, A., Gonatas, J., Gambetti, P., Antoine, J. C., and Avrameas, S., 1974, Ultrastructural autoradiographic detection of intracellular immunoglobulins with iodinated Fab fragments of antibody. The combined use of ultrastructural autoradiography and peroxidase cytochemistry for the detection of two antigens (double labeling), J. Histochem. Cytochem. 22: 999.PubMedCrossRefGoogle Scholar
  187. Goodenough, D. A., and Revel, J. P., 1970, A fine structural analysis of intercellular junctions in the mouse liver, J. Cell Biol. 45: 272.PubMedCrossRefGoogle Scholar
  188. Goodenough, D. A., and Stoeckenius, W., 1972, The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and X-ray diffraction, J. Cell Biol. 54: 646.PubMedCrossRefGoogle Scholar
  189. Gordon, C. N., 1972, The use of octadecanol monolayers as wetting agents in the negative staining techniques. J. Ultrastruct. Res. 39: 173.PubMedCrossRefGoogle Scholar
  190. Gorter, E., and Grendel, F., 1925, On bimolecular layers of lipoids on the chromocytes of the blood, J. Exp. Med. 41: 439.PubMedCrossRefGoogle Scholar
  191. Graham, R. C., and Karnovsky, M. J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem. 14: 291.PubMedCrossRefGoogle Scholar
  192. Grant, C. W. M., and McConnell, H. M., 1974, Glycophorin in lipid bilayers, Proc. Natl. Acad. Sci. USA 71: 4653.PubMedCrossRefGoogle Scholar
  193. Green, D. E., and MacLennan, D. H., 1969, Structure and function of the mitochondrial cristael membrane, Bioscience 19: 213.CrossRefGoogle Scholar
  194. Greenwood, F. C., Hunter, W. M., and Glover, J. S., 1963, The preparation of 131I- labelled human growth hormone of high specific radioactivity, Biochem. J. 89: 114.PubMedGoogle Scholar
  195. Gregory, D. W., and Pirie, B. J. S., 1972, Wetting agents for electron microscopy of biological specimens, in: Proceedings of the Fifth European Congress on Electron Microscopy, ( V. E. Cosslett, ed.), pp. 234–235, The Institute of Physics, London, Bristol.Google Scholar
  196. Guidotti, G., 1972, Membrane proteins, Ann. Rev. Biochem. 41: 731.PubMedCrossRefGoogle Scholar
  197. Gustayson, K. H., 1949, Some protein-chemical aspects of tanning processes, in: Advances in Protein Chemistry, Vol. V, ( M. L. Anson, J. T. Edsall, and K. Bailey, eds.), pp. 353–421, Academic Press, New York.Google Scholar
  198. Haas, W. J., Sizer, I. W., and Loofbourow, J. R., 1951, The effect of permanganate on the ultraviolet absorption spectra of aromatic amino acids and proteins, Biochim. Biophys. Acta 6: 601.PubMedCrossRefGoogle Scholar
  199. Habeeb, A. F. S. A., 1966, Determination of free amino groups in proteins by trinitrobenzenesulfonic acid, Anal. Biochem. 14: 328.PubMedCrossRefGoogle Scholar
  200. Habeeb, A. F. S. A., and Hiramoto, R., 1968, Reaction of protein with glutaraldehyde, Arch. Biochem. Biophys. 126: 16.PubMedCrossRefGoogle Scholar
  201. Hackenbrock, C. R., 1975, Comparative distribution of cytochrome oxidase, succinate permease, and fixed anionic sites on the intact inner mitochondrial membrane. Polycationic ferritin as a visually detectable metabolic inhibitor, Arch. Biochem. Biophys. 170: 139.PubMedCrossRefGoogle Scholar
  202. Hackenbrock, C. R., Rhen, T. G., Weinbach, E. C., and Lemasters, J. J., 1971, Oxidative phosphorylation and ultrastructural transformation in mitochondria in the intact Ascites tumor cell, J. Cell Biol. 51: 123.PubMedCrossRefGoogle Scholar
  203. Haest, C. W. M., Verklej, A. J., De Gier, J., Scheek, R., Ververgaert, P. H. J. Th., and van Deenen, L. L. M., 1974, The effect of lipid phase transitions on the architecture of bacterial membranes, Biochim. Biophys. Acta 356: 17.PubMedCrossRefGoogle Scholar
  204. Haggis, G. H., 1961, Electron microscope replicas from the surface of a fracture through frozen cells, J. Biophys. Biochem. Cytol. 9: 841.PubMedCrossRefGoogle Scholar
  205. Hahn, M. H., 1965, Zur Deutung der “Granulation” elektronenmikroskopischer Bilder hoher Vergrößerung, Z. Naturforsch. 20a: 487.Google Scholar
  206. Hake, T., 1965, Studies on the reactions of OsO, and KMnO, with amino acids, peptides, and proteins, Lab. Invest. 14: 1208.PubMedGoogle Scholar
  207. Hall, C. E., 1950, A low temperature replica method for electron microscopy, J. Appl. Phys. 21: 61.CrossRefGoogle Scholar
  208. Hall, C. E., 1955, Electron densitometry of stained virus particles, J. Biophys. Biochem. Cytol. 1: 1.PubMedCrossRefGoogle Scholar
  209. Hall, C. E., 1966, Introduction to Electron Microscopy, McGraw-Hill Book Company, New York.Google Scholar
  210. Hall, C. E., Jackus, M. A., and Schmitt, F. O., 1945, The structure of certain muscle fibrils as revealed by the use of electron stains, J. Appl. Phys. 16: 459.CrossRefGoogle Scholar
  211. Hall, R. H., and Stern, E. S., 1955, Unsaturated aldehydes and related compounds. VII. Thermal fission of 1,1,3-trialkoxypropanes, J. Chem. Soc. 26: 57.Google Scholar
  212. Hall, T., Echlin, P., and Kaufmann, R. (eds.), 1974, Microprobe Analysis as Applied to Cells and Tissues, Academic Press, London, New York.Google Scholar
  213. Hämmerling, U., Aoki, T., De Harven, E., Boyse, E. A., and Old, L. J., 1968, Use of hybrid antibody with anti-yG and anti-ferritin specificities in locating cell surface antigens by electron microscopy, J. Exp. Med. 128: 1461.PubMedCrossRefGoogle Scholar
  214. Hanker, J. S., Kasler, F., Bloom, M. G., Copeland, J. S., and Seligman, A. M., 1967, Coordination polymers of osmium: The nature of osmium black, Science 156: 1737.PubMedCrossRefGoogle Scholar
  215. Hanker, J. S., Anderson, W. A., and Bloom, F. E., 1972, Osmiophilic polymer generation: Catalysis by transition metal compounds in ultrastructural cytochemistry, Science 175: 991.PubMedCrossRefGoogle Scholar
  216. Hanker, J. S., Kusyk, C. J., Bloom, F. E., and Pearse, A. G. E., 1973, The demonstration of dehydrogenases and monoamine oxidase by the formation of osmium blacks at the sites of Hatchett’s brown, Histochemie 33: 205.PubMedGoogle Scholar
  217. Hanszen, K. J., 1967, Neue Erkenntnisse über Auflösung und Kontrast im elektronenmikroskopischen Bild, Naturwissenschaften 54: 125.PubMedCrossRefGoogle Scholar
  218. Hanszen, K. J., 1968, Lichtoptische Anordnungen mit Laser-Lichtquellen als Hilfsmittel für die Elektronenmikroskopie, in: Proceedings of the 4th Regional European Conference for Electron Microscopy, Vol. 1, ( O. S. Bocciarelli, ed.), pp. 153–154, Tipografia Poliglotta Vaticana, Rome.Google Scholar
  219. Hanszen, K. J., 1971, The optical transfer theory in the electron microscope: Fundamental principles and applications, in: Advances in Optical and Electron Microscopy, Vol. IV, ( R. Barer and V. E. Cosslett, eds.), pp. 1–84, Academic Press, New York and London.Google Scholar
  220. Hanszen, K. J., and Ade, G., 1974, The relevance of inelastic scattering, in: Problems and Results of the Optical Transfer Theory and of Reconstruction Methods in Electron Microscopy, pp. 29–38, Bericht PTB-APh-5, Physikalisch-Technische Bundesanstalt, Braunschweig.Google Scholar
  221. Hardy, P. M., Nicholls, A. C., and Rydon, H. N., 1969, The nature of glutaraldehyde in aqueous solution, Chem. Commun. 565: 566.Google Scholar
  222. Harmon, H. J., Hall, J. D., and Crane, F. L., 1974, Structure of mitochondrial cristae membranes, Biochim. Biophys. Acta 344: 119.PubMedCrossRefGoogle Scholar
  223. Haschemeyer, R. H., and Myers, R. J., 1972, Negative staining, in: Principles and Techniques of Electron Microscopy. Biological Applications, Vol. 2, ( M. A. Hayat, ed.), pp. 99–147, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  224. Hassell, J., and Hand, A. R., 1974, Tissue fixation with diimidoesters as an alternative to aldehydes. I. Comparison of cross-linking and ultrastructure obtained with dimethylsuberimidate and glutaraldehyde, J. Histochem. Cytochem. 22: 223.PubMedCrossRefGoogle Scholar
  225. Hayat, M. A., 1970, Principles and Techniques of Electron Microscopy. Biological Applications, Vol. 1, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  226. Heckman, C. A., and Barrnett, R. J., 1973, GACH: A water-miscible, lipid-retaining embedding polymer for electron microscopy, J. Ultrastruct. Res. 42: 156.PubMedCrossRefGoogle Scholar
  227. Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature (Lond.) 257: 28.CrossRefGoogle Scholar
  228. Henning, R., and Uhlenbruck, G., 1973, Detection of carbohydrate structures on isolated subcellular organelles of rat liver by heterophile agglutinins, Nature (London) New Biol. 242: 120.CrossRefGoogle Scholar
  229. Henning, R., Kaulen, H. D., and Stoffel, W., 1970, Isolation and chemical composition of the lysosomal and the plasma membrane of the rat liver cell, Hoppe-Seyler’s Z. Physiol. Chem. 351: 1191.PubMedCrossRefGoogle Scholar
  230. Henning, R., Plattner, H., and Stoffel, W., 1973, Nature and localization of acidic groups on lysosomal membranes, Biochim. Biophys. Acta 330: 61.PubMedCrossRefGoogle Scholar
  231. Hereward, F. V., and Northcote, D. H., 1972, Localization of freeze-fracture planes of yeast membranes, J. Cell Sci. 10: 555.PubMedGoogle Scholar
  232. Herzog, V., and Fahimi, H. D., 1974, The effect of glutaraldehyde on catalase. Biochemical and cytochemical studies with beef liver catalase and rat liver peroxisomes, J. Cell Biol. 60: 303.PubMedCrossRefGoogle Scholar
  233. Heslinga, F. J. M., and Deierkauf, F. A., 1961, The action of histological fixatives on tissue lipids: Comparison of the action of several fixatives using paper chromatography, J. Histochem. Cytochem. 9: 572.PubMedCrossRefGoogle Scholar
  234. Higgins, J. A., Florendo, N. T., and Barrnett, R. J., 1973, Localization of cholesterol in membranes of erythrocyte ghosts, J. Ultrastruct. Res. 42: 66.PubMedCrossRefGoogle Scholar
  235. Hildebrand, C., 1974, Embedding of myelinated nerve tissue in water-soluble resorcinol- formaldehyde resins for light and electron microscopy, Stain Technol. 49: 281.PubMedGoogle Scholar
  236. Hilditch, T. P., 1926, The isomerism of the dihydroxystearic acids produced by oxidation of acids of the oleic and elaidic series, J. Chem. Soc. 18: 28.Google Scholar
  237. Hirai, K. I., 1971, Comparison between 3,3’-diaminobenzidine and auto-oxidized 3,3’diaminobenzidine in the cytochemical demonstration of oxidative enzymes, J. Histochem. Cytochem. 19: 434.PubMedCrossRefGoogle Scholar
  238. Hirschauer, M., and Prioul, J. L., 1969, Essai de restitution du relief sur des clichés de répliques obtenues par cryodécapage, C. R. Acad. Sci. Paris, Ser. D 268: 3064.Google Scholar
  239. Holmes, K. C., and Blow, D. M., 1965, The Use of X-ray Diffraction in the Study of Protein and Nucleic Acid Structure, Interscience Division of John Wiley and Sons, New York, London, Sidney.Google Scholar
  240. Hong, K., and Hubbell, W. L., 1972, Preparation and properties of phospholipid bilayers containing rhodopsin, Proc. Natl. Acad. Sci. USA 69: 2617.PubMedCrossRefGoogle Scholar
  241. Hopwood, D., 1969a, A comparison of the crosslinking abilities of glutaraldehyde, formaldehyde and a-hydroxyadipaldehyde with bovine serum albumin and casein, Histochemie 17: 151.PubMedCrossRefGoogle Scholar
  242. Hopwood, D., 19696, Fixation of proteins by osmium tetroxide, potassium dichromate and potassium permanganate. Model experiments with bovine serum albumin and bovine y-globulin, Histochemie 18: 250.Google Scholar
  243. Hopwood, D., 1969c, The elution patterns of formaldehyde, glutaraldehyde, glyoxal and a-hydroxyadipaldehyde from Sephadex G-10 and their significance for tissue fixation, Histochemie 20: 127.PubMedCrossRefGoogle Scholar
  244. Hopwood, D., 1970, The reactions between formaldehyde, glutaraldehyde and osmium tetroxide, and their fixation effects on bovine serum albumin and on tissue blocks, Histochemie 24: 50.PubMedCrossRefGoogle Scholar
  245. Hopwood, D., 1972, Theoretical and practical aspects of glutaraldehyde fixation, Histochem. J. 4: 267.PubMedCrossRefGoogle Scholar
  246. Hopwood, D., Allen, C. R., and McCabe, M., 1970, The reactions between glutaraldehyde and various proteins. An investigation of their kinetics, Histochem. J. 2: 137.PubMedCrossRefGoogle Scholar
  247. Home, R. W., and Whittaker, V. P., 1962, The use of the negative staining method for the electron-microscopic study of subcellular particles from animal tissues. Z. Zellforsch. Mikrosk. Anat. 58: 1.CrossRefGoogle Scholar
  248. Howell, J. N., and Jenden, D. J., 1967, T-tubules of skeletal muscle: Morphological alterations which interrupt contraction coupling, Fed. Proc. 26: 553.Google Scholar
  249. Howell, S. L., and Whitfield, M., 1972, Cytochemical localization of adenyl cyclase activity in rat islets of Langerhans, J. Histochem. Cytochem. 20: 873.PubMedCrossRefGoogle Scholar
  250. Hubbard, A. L., and Cohn, Z. A., 1972, The enzymatic iodination of the red cell membrane, J. Cell Biol. 55: 390.PubMedCrossRefGoogle Scholar
  251. Hui, S. W., and Parsons, D. F., 1975, Direct observation of domains in wet lipid bilayers, Sci. (Wash. D. C.) 190: 383.CrossRefGoogle Scholar
  252. Hunter, M. J., and Ludwig, M. L., 1972, Amidination, in: Methods in Enzymology, Vol. XXV, ( C. H. W. Hirs and S. N. Timasheff, eds.), pp. 585–596, Academic Press, New York, London.Google Scholar
  253. Huxley, H. E., 1958, Some aspects of staining of tissue for sectioning, J. R. Microsc. Soc. 78: 30.PubMedCrossRefGoogle Scholar
  254. Huxley, H. E., and Zubay, G., 1960, Electron microscope observations on the structure of microsomal particles from Escherichia coli, J. Mol. Biol. 2: 10.CrossRefGoogle Scholar
  255. Huxley, H. E., and Zubay, G., 1961, Preferential staining of nucleic acid-containing structures for electron microscopy, J. Biophys. Biochem. Cytol. 11: 273.PubMedCrossRefGoogle Scholar
  256. Idelman, S., 1964, Modification de la technique de Luft en vue de la conservation des lipides en microscopie électronique, J. Microscopie 3: 715.Google Scholar
  257. Iglesias, J. R., Bernier, R., and Simard, R., 1971, Ultracryotomy: A routine procedure, J. Ultrastruct. Res. 36: 271.PubMedCrossRefGoogle Scholar
  258. James, R., and Branton, D., 1971, The correlation between the saturation of membrane fatty acids and the presence of membrane fracture faces after osmium fixation, Biochim. Biophys. Acta 233: 504.PubMedCrossRefGoogle Scholar
  259. James, R., and Branton, D., 1973, Lipid-and temperature-dependent structural changes in Acholeplasma laidlawii cell membranes. Biochim. Biophys. Acta 323: 378.PubMedCrossRefGoogle Scholar
  260. Jamieson, J. D., and Palade, G. E., 1967, Intracellular transport of secretory proteins in the pancreatic exocrine cell. Il. Transport to condensing vacuoles and zymogen granules, J. Bell Biol. 34: 597.CrossRefGoogle Scholar
  261. Ji, T. H., and Ji, T., 1974, Crosslinking of glycoproteins in human erythrocyte ghosts, J. Mol. Biol. 86: 129.PubMedCrossRefGoogle Scholar
  262. Johnson, H. M., 1973, In-focus phase contrast microscopy, in: Principles and Techniques of Electron Microscopy, Vol. 3, ( M. A. Hayat, ed.), pp. 153–198, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  263. Johnson, M. W., and Home, R. W., 1970, Some observations on the relative dehydration rates of negative stains and biological objects, J. Microsc. 91: 197.PubMedCrossRefGoogle Scholar
  264. Johnson, R., Hammer, M., Sheridan, J., and Revel, J. P., 1974, Gap junction formation between reaggregated Novikoff hepatoma cells, Proc. Natl. Acad. Sci. USA 71: 4536.PubMedCrossRefGoogle Scholar
  265. Jones, D., 1972, Reactions of aldehydes with unsaturated fatty acids during histological fixation, Histochem. J. 4: 421.PubMedCrossRefGoogle Scholar
  266. Jost, M., 1965, Die Ultrastruktur von Oscillatoria rubescens D. C., Arch. Mikrobiol. 50: 211.CrossRefGoogle Scholar
  267. Jost, P., and Griffith, O. H., 1973, The molecular reorganization of lipid bilayers by osmium tetroxide. A spin-label study of orientation and restricted y-axis anisotropic motion in model membrane systems, Arch. Biochem. Biophys. 159: 70.PubMedCrossRefGoogle Scholar
  268. Jost, P., Waggoner, A. S., and Griffith, O. H., 1971, Spin labeling and membrane structure, in: Structure and Function of Biological Membranes, ( L. I. Rothfield, ed.), pp. 83–144, Academic Press, New York, London.Google Scholar
  269. Jost, P., Brooks, U. J., and Griffith, O. H., 1973, Fluidity of phospholipid bilayers and membranes after exposure to osmium tetroxide and glutaraldehyde, J. Mol. Biol. 76: 313.PubMedCrossRefGoogle Scholar
  270. Kalina, M., Plapinger, R. E., Hoshino, Y., and Seligman, A. M., 1972, Nonosmiophilic tetrazolium salts that yield osmiophilic, lipophobic formazans for ultrastructural localization of dehydrogenase activity, J. Histochem. Cytochem. 20: 685.PubMedCrossRefGoogle Scholar
  271. Kanno, H., Speedy, R. J., and Angell, C. A., 1975, Supercooling of water to —92° under pressure, Sci. (Wash. D. C.) 189: 880.CrossRefGoogle Scholar
  272. Karnovsky, M. J., 1965, A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy, J. Cell Biol. 27: 137A.Google Scholar
  273. Karnovsky, M. J., and Rice, D. F., 1969, Exogenous cytochrome c as an ultrastructural tracer, J. Histochem. Cytochem. 17: 751.PubMedCrossRefGoogle Scholar
  274. Karnovsky, M. J., Unanue, E. R., and Leventhal, M., 1972, Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties, J. Exp. Med. 136: 907.PubMedCrossRefGoogle Scholar
  275. Kauzman, W., 1959, Some factors in the interpretation of protein denaturation, in: Advances in Protein Chemistry, Vol. 14, ( C. B. Anfinsen, M. C. Anson, K. Bailey, and J. T. Edsall, eds.), pp. 1–63, Academic Press, New York and London.Google Scholar
  276. Kellenberger, E., Ryter, A., and Séchaud, J., 1958, Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states, J. Biophys. Biochem. Cytol. 4: 671.PubMedCrossRefGoogle Scholar
  277. Kendall, P. A., Polak, J. M., and Pearse, A. G. E., 1971, Carbodiimide fixation for immunohistochemistry: Observations on the fixation of polypeptide hormones, Experientia 27: 1104.PubMedCrossRefGoogle Scholar
  278. Kent, S. P., and Wilson, D. V., 1975, Polysaccharides as labels for antibodies in electron microscopy, J. Histochem. Cytochem. 23: 169.PubMedCrossRefGoogle Scholar
  279. Kerpel-Fronius, S., and Hajós, F., 1968, The use of ferricyanide for the light and electron microscopic demonstration of succinic dehydrogenase activity, Histochemie 14: 343.PubMedCrossRefGoogle Scholar
  280. Keyhani, E., 1972, Effect of glutaraldehyde and osmium on the properties of the mitochondria] membrane, in: Proceedings of the Fifth European Congress on Electron Microscopy, ( V. E. Cosslett, ed.), pp. 270–271, The Institute of Physics, London, Bristol.Google Scholar
  281. Kinsky, S. C., Luse, S. A., Zopf, D., Van Deenen, L. L. M., and Haxby, J., 1967, Interaction of filipin and derivatives with erythrocyte membranes and lipid dispersions: Electron microscopic observations, Biochim. Biophys. Acta 135: 844.PubMedCrossRefGoogle Scholar
  282. Kleemann, W., and McConnell, H. M., 1974, Lateral phase separations in Escherichia coli membranes, Biochim. Biophys. Acta 345: 220.PubMedCrossRefGoogle Scholar
  283. Kleinig, H., Dörr, I., and Kollmann, R., 1971, Vinblastine-induced precipitation of phloem proteins in vitro, Protoplasma 73: 293.CrossRefGoogle Scholar
  284. Knutton, S., Limbrick, A. R., and Robertson, J. D., 1974, Regular structures in membranes. I. Membranes in endocytic complex of ilea) epithelial cells, J. Cell Biol. 62: 679.PubMedCrossRefGoogle Scholar
  285. Koehler, J. K., 1968, The technique and application of freeze-etching in ultrastructure research, in: Adv. Biol. Med. Phys., Vol. 12, ( J. Lawrence and J. W. Gofman, eds.), pp. 1–84, Academic Press, New York.Google Scholar
  286. Koehler, J. K., 1972, The freeze etching technique, in: Principles and Techniques of Electron Microscopy, Vol. 2, ( M. A. Hayat, ed.), pp. 51–98, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  287. Kopp, F., 1972, Zur Membranstruktur: Lokalisation von Membranlipiden im Hefeplasmalemma, Cytobiologie Z. Exp. Zellforsch. 6: 287.Google Scholar
  288. Korn, A. H., Feairheller, S. H., and Filachione, E. M., 1972, Glutaraldehyde: Nature of the reagent, J. Mol. Biol. 65: 525.PubMedCrossRefGoogle Scholar
  289. Korn, E. D., 1966a, Synthesis of bis(methyl 9,10-dihydroxy-stearate)osmate from methyl oleate and osmium tetroxide under conditions used for fixation of biological material, Biochim. Biophys. Acta 116: 317.PubMedCrossRefGoogle Scholar
  290. Korn, E. D., 1966h, Modification of oleic acid during fixation of amoebae by osmium tetroxide, Biochim. Biophys. Acta 116: 325.PubMedCrossRefGoogle Scholar
  291. Korn, E. D., 1967, A chromatographic and spectrophotometric study of the products of the reaction of osmium tetroxide with unsaturated lipids, J. Cell. Biol 34: 627.PubMedCrossRefGoogle Scholar
  292. Korn, E. D., and Weisman, R. A., 1966, I. Loss of lipids during preparation of amoebae for electron microscopy, Biochim. Biophys. Acta 116: 309.PubMedCrossRefGoogle Scholar
  293. Kraehenbuhl, J. P., and Jamieson, J. D., 1972, Solid-phase conjugation of ferritin to Fab-fragments of immunoglobulin G for use in antigen localization on thin sections, Proc. Natl. Acad. Sci. USA 69: 1771.PubMedCrossRefGoogle Scholar
  294. Kraehenbuhl, J. P., and Jamieson, J. D., 1974, Localization of intracellular antigens by immunoelectron microscopy, Int. Rev. Exp. Pathol. 13: 1.PubMedGoogle Scholar
  295. Kraehenbuhl, J. P., Galardy, R. E., and Jamieson, J. D., 1974, Preparation and characterization of an immunoelectron microscope tracer consisting of a heme-octopeptide coupled to Fab, J. Exp. Med. 139: 208.PubMedCrossRefGoogle Scholar
  296. Kushida, H., 1961, A styrene-methacrylate resin embedding method for ultrathin sectioning, J. Electron Microsc. 10: 16.Google Scholar
  297. Kyte, J., 1976a, Immunoferritin determination of the distribution of (Na+ + K+)ATPase over the plasma membranes of renal convoluted tubules. 1. Distal segment, J. Cell Biol. 68: 287.PubMedCrossRefGoogle Scholar
  298. Kyte, J., 1976b, Immunoferritin determination of the distribution of (Na+ + K+)ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment, J. Cell Biol. 68: 304.PubMedCrossRefGoogle Scholar
  299. Lamm, M. E., Koo, G. C., Stackpole, C. W., and Hämmerling, U., 1972, Hapten-conjugated antibodies and visual markers used to label cell-surface antigens for electron microscopy: An approach to double labeling, Proc. Nall. Acad. Sci. USA 69: 3732.CrossRefGoogle Scholar
  300. Landis, D. M. D., and Reese, T. S., 1974, Arrays of particles in freeze-fractured astrocytic membranes, J. Cell Biol. 60: 316.PubMedCrossRefGoogle Scholar
  301. Langmore, J. P., Wall, J. S., and Isaacson, M. S., 1973, The collection of scattered electrons in dark field electron microscopy, I. Elastic scattering, Optik 38: 335.Google Scholar
  302. Langmuir, I., 1917, The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc. 39: 1848.CrossRefGoogle Scholar
  303. Langmuir, I., 1939, Pilgrim Trust Lecture. Molecular layers, Proc. R. Soc. (London) 170A: 1.CrossRefGoogle Scholar
  304. Leduc, E. H., and Holt, S. J., 1965, Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron microscopy, J. Cell Biol. 26: 137.PubMedCrossRefGoogle Scholar
  305. Leduc, E. H., Marinozzi, V., and Bernhard, W., 1963, The use of water-soluble glycol methacrylates in ultrastructural cytochemistry, J. R. Microse. Soc. 81: 119.CrossRefGoogle Scholar
  306. Lee, D., 1972, The effect of glycerol, ethanol and dimethylsulfoxide on rat liver lysosomes, Biochim. Biophys. Acta 266: 50.PubMedCrossRefGoogle Scholar
  307. Lehninger, A. L., Wadkins, C. L., Cooper, C., Devlin, T. M., and Gamble, J. L., 1958, Oxidative phosphorylation, Science 128: 450.PubMedCrossRefGoogle Scholar
  308. Leibo, S. P., Mazur, P., and Jackowski, S. C., 1974, Factors affecting survival of mouse embryos during freezing and thawing, Exp. Cell Res. 89: 79.PubMedCrossRefGoogle Scholar
  309. Lemberg, M. R., 1969, Cytochrome oxidase, Physiol. Rev. 94: 48.Google Scholar
  310. Lenard, J., and Singer, S. J., 1968, Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy, J. Cell Biol. 37: 117.PubMedCrossRefGoogle Scholar
  311. Lenz, F., 1954, Zur Streuung mittelschneller Elektronen in kleinste Winkel, Z. Naturforsch. 9a: 185.Google Scholar
  312. Leslie, R. B., 1968, Membranes and bioenergetics, in: Biological Membranes, ( D. Chapman, ed.), pp. 289–346, Academic Press, London, New York.Google Scholar
  313. Litman, R. B., and Barrnett, R. J., 1972, The mechanism of the fixation of tissue components by osmium tetroxide via hydrogen bonding, J. Ultrastruct. Rse. 38: 63.CrossRefGoogle Scholar
  314. Locke, M., and Krishnan, N., 1971, Hot alcoholic phosphotungstic acid and uranyl acetate as routine stains for thick and thin sections, J. Cell Biol. 50: 550.PubMedCrossRefGoogle Scholar
  315. Locke, M., Krishnan, N., and McMahon, J. T., 1971, A routine method for obtaining high contrast without staining sections, J. Cell Biol. 50: 540.PubMedCrossRefGoogle Scholar
  316. Loewenstein, W. R., 1966, Permeability of membrane junctions, Ann. N. Y. Acad. Sci. 137: 441.PubMedCrossRefGoogle Scholar
  317. Loewenstein, W. R., 1973, Membrane junctions in growth and differentiation, Fed. Proc. 32: 60.PubMedGoogle Scholar
  318. Lombardi, L., Prenna, G., Okolicsanyi, L., and Gautier, A., 1971, Electron staining with uranyl acetate. Possible role of free amino groups, J. Histochem. Cytochem. 19: 161.PubMedCrossRefGoogle Scholar
  319. Loud, A. V., 1968, A quantitative stereológical description of the ultrastructure of normal rat liver parenchymal cells, J. Cell Biol. 37: 27.PubMedCrossRefGoogle Scholar
  320. Low, F. N., and Freeman, J. A., 1956, Some experiments with chromium compounds as fixers for electron microscopy, J. Biophys. Biochem. Cytol. 2: 629.PubMedCrossRefGoogle Scholar
  321. Lowden, J. A., Moscarello, M. A., and Morecki, R., 1966, The isolation and characterization of an acid-soluble protein from myelin, Can. J. Biochem. 44: 567.PubMedCrossRefGoogle Scholar
  322. Lucy, J. A., and Glauert, A. M., 1964, Structure and assembly of macromolecular lipid complexes composed of globular micelles, J. Mol. Biol. 8: 727.PubMedCrossRefGoogle Scholar
  323. Luft, J. H., 1956, Permanganate—a new fixative for electron microscopy, J. Biophys. Biochem. Cytol. 2: 799.PubMedCrossRefGoogle Scholar
  324. Luft, J. H., 1959, The use of acrolein as a fixative for light and electron microscopy, Anat. Rec. 133: 305.Google Scholar
  325. Luft, J. H., 1961, Improvements in epoxy resin embedding methods, J. Biophys. Biochem. Cytol. 9: 409.PubMedCrossRefGoogle Scholar
  326. Luft, J. H., 1971, Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action, Anat. Rec. 171: 347.PubMedCrossRefGoogle Scholar
  327. Luft, J. H., 1973, Embedding media—old and new, in: Advanced Techniques in Biological Electron Microscopy, ( J. K. Koehler, ed.), pp. 1–34, Springer Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  328. Maaloe, O., and Birch-Andersen, A., 1956, On the organization of the “nuclear material” in Salmonella typhimurium, Symp. Soc. Gen. Microbiol. 6: 261.Google Scholar
  329. Marchesi, S. L., Steers, E., Marchesi, V. T., and Tillack, T. W., 1970, Physical and chem- ical properties of a protein isolated from red cell membranes, Biochemistry 9: 50.PubMedCrossRefGoogle Scholar
  330. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 69: 1445.PubMedCrossRefGoogle Scholar
  331. Martin, B. J., and Spicer, S. S., 1974, Concanavalin A–iron dextran technique for staining cell surface mucosubstances, J. Histochem. Cytochem. 22: 206.PubMedCrossRefGoogle Scholar
  332. Martinez-Palomo, A., 1970, The surface coats of animal cells, Int. Rev. Cytol. 29: 29.CrossRefGoogle Scholar
  333. Martinez-Palomo, A., and Erlij, D., 1975, Structure of tight junctions in epithelia with different permeability, Proc. Natl. Acad. Sci. USA 72: 4487.PubMedCrossRefGoogle Scholar
  334. Marucci, A. A., Di Stefano, H. S., and Dougherty, R. M., 1974, Preparation and use of soluble ferritin—antiferritin complexes as a specific marker for immunoelectron microscopy, J. Histochem. Cytochem. 22: 35.PubMedCrossRefGoogle Scholar
  335. Mason, T. E., Phifer, R. F., Spicer, S. S., Swallow, R. A., and Dreskin, R. B., 1969, An immunoglobulin-enzyme bridge method for localizing tissue antigens, J. Histochem. Cytochem. 17: 563.PubMedCrossRefGoogle Scholar
  336. Maunsbach, A. B., 1966, The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. Ti. Effects of varying osmolality, ionic strength, buffer system and fixative concentration of glutaraldehyde solutions. J.. Ultrastruct. Res. 15: 283.PubMedCrossRefGoogle Scholar
  337. Mazur, P., 1966, Physical and chemical basis of injury in single-celled microorganisms subjected to freezing and thawing, in: Cryobiology, ( H. T. Meryman, ed.), p. 214, Academic Press, New York.Google Scholar
  338. Mazur, P., Leibo, S. P.,,and Chu, E. H. Y., 1972, A two-factor hypothesis of freezing injury, Exp. Cell Res. 71: 345.PubMedCrossRefGoogle Scholar
  339. Mazurkiewicz, J. E., and Nakane, P. K., 1972, Light and electron microscopic localization of antigens in tissues embedded in polyethylene glycol with a peroxidase-labeled antibody method, J. Histochem. Cytochem. 20: 969.PubMedCrossRefGoogle Scholar
  340. McAlear, J. H., and Kreutziger, G. O., 1967, Freeze-etching with radiant energy in a simple cold block device, Proceedings of the 25th Annual Meeting of the Electron Microscope Society of America, p. 116, Claitor’s Publishing Division, Bâton Rouge.Google Scholar
  341. McCarty, R. E., and Racker, E., 1966, Energy conversion by the photosynthetic apparatus, Brookhaven Symp. Biol. 19: 202.PubMedGoogle Scholar
  342. McCarty, R. E., and Racker, E., 1968, Partial resolution of the enzymes catalyzing phosphorylation. III. Activation of adenosine triphosphatase and 32P-labeled orthophosphate—adenosine triphosphate exchange in chloroplasts, J. Biol. Chem. 243: 129.PubMedGoogle Scholar
  343. McClintock, F. A., and Argon, A. S., 1966, Mechanical Behavior of Materials, Addison Wesley, Ontario.Google Scholar
  344. McConnell, H. M., Wright, K. L., and McFarland, B. G., 1972, The fraction of the lipid in a biological membrane that is in a fluid state: A spin label assay, Biochem. Biophys. Res. Commun. 47: 273.PubMedCrossRefGoogle Scholar
  345. McFadden, B. A., and Tabita, F. R., 1974, D-Ribulose-1,5-drphosphate carboxylase and the evolution of autotrophy, Biosystems 6: 93.PubMedCrossRefGoogle Scholar
  346. McGee-Russell, S. M., and DeBruijn, W. C., 1964, Experiments on embedding media for electron microscopy, Quart. J. Microsc. Sci. 105: 231.Google Scholar
  347. McIntyre, J. A., Gilula, N. B., and Karnovsky, M. J., 1974, Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes, J. Cell Biol. 60: 192.PubMedCrossRefGoogle Scholar
  348. McLean, I. W., and Nakane, P. K., 1974, Periodate—lysine—paraformaldehyde fixative. A new fixative for immunoelectron microscopy, J. Histochem. Cytochem: 22: 1077.PubMedCrossRefGoogle Scholar
  349. McLean, J. D., and Singer, S. J., 1964, Crosslinked polyampholytes. New water-soluble embedding media for electron microscopy, J. Cell Biol. 20: 518.PubMedCrossRefGoogle Scholar
  350. McLean, J. D., and Singer, S. J., 1970, A general method for the specific staining of intracellular antigens with ferritin-antibody conjugates, Proc. Natl. Acad. Sci. USA 65: 122.PubMedCrossRefGoogle Scholar
  351. McMillan, J. A., and Los, S. C., 1965, Vitreous ice: Irreversible transformations during warm-up, Nature (Lond.) 206: 806.CrossRefGoogle Scholar
  352. McMillan, P. N., and Luftig, R. B., 1973, Preservation of erythrocyte ghost ultrastructure achieved by various fixatives, Proc. Natl. Acad. Sci. USA 70: 3060.PubMedCrossRefGoogle Scholar
  353. McMillan, P. N., and Luftig, R. B., 1975, Preservation of membrane ultrastructure with aldehyde or imidate fixatives, J. Ultrastruct. Res. 52: 243.PubMedCrossRefGoogle Scholar
  354. McNutt, N. S., and Weinstein, R. S., 1973, Membrane ultrastructure at mammalian intercellular junctions, Prog. Biophys. Mol. Biol. 26: 47.Google Scholar
  355. Mednick, M. L., Petrali, J. P., Thomas, N. C., Sternberger, L. A., Plapinger, R. E., Davis, D. A., Wasserkrug, H. L., and Seligman, A. M., 1971, Localization of acetylcholinesterase via production of osmiophilic polymers: new benzenediazonium salts with thiolacetate functions, J. Histochem. Cytochem. 19: 155.PubMedCrossRefGoogle Scholar
  356. Mendelson, K., 1956, Liquid helium, in: Handbuch der Physik. Encyclopedia of Physics, XV Low Temperature Physics II, ( S. Flügge, ed.), pp. 370–461, Springer Verlag, Berlin.Google Scholar
  357. Menold, R., Kaiser, W., and Lüttge, B., 1971, Zur elektronenmikroskopischen Ermittlung der Teilchenanordnung in Dispersionen mit flüssiger äußerer Phase, Naturwissenschaften 58: 620.CrossRefGoogle Scholar
  358. Meryman, H. T., and Kafig, E., 1954, Replication of frozen solutions for electron microscopy, in: Proceedings of the Third International Conference on Electron Microscopy, (V. E. Cosslett and R. Ross, eds.), pp. 486–488, The Royal Microscopic Society, London, 1956.Google Scholar
  359. Meyer, H. W., and Winkelmann, H., 1969, Die Gefrierätzung und die Struktur biologischer Membranen, Protoplasma 68: 253.PubMedCrossRefGoogle Scholar
  360. Meyer, H. W., and Winkelmann, H., 1972, Über die Anordnung der Membranproteine nach Untersuchungen mit der Gefrierätzung an isolierten Erythrozytenmembranen, Protoplasma 75: 255.PubMedCrossRefGoogle Scholar
  361. Miller, K. R., and Staehelin, L. A., 1976, Analysis of the thylakoid outer surface. Coupling factor is limited to unstacked membrane regions, J. Cell Biol. 68: 30.PubMedCrossRefGoogle Scholar
  362. Millonig, G., and Marinozzi, V., 1968, Fixation and embedding in electron microscopy, in: Advances in Optical and Electron Microscopy, Vol. 2, ( R. Barer and V. E. Cosslett, eds.), pp. 251–341, Academic Press, New York, London.Google Scholar
  363. Miyawaki, H., 1972, Non-aqueous negative staining. A method for applying negative staining to ultrathin sections of epoxy-embedded tissues, J. Microscopie 13: 327.Google Scholar
  364. Mollenhauer, H. H., 1959, Permanganate fixation of plant cells, J. Biophys. Biochem. Cytol. 6: 431.PubMedCrossRefGoogle Scholar
  365. Mollenhauer, H. H., and Totten, C., 1971, Studies on seeds. I. Fixation of seeds, J. Cell Biol. 48: 387.PubMedCrossRefGoogle Scholar
  366. Monneron, A., and Bernhard, W., 1966, Action de certaines enzymes sur des tissus inclus en Epon, J. Microscopie 5: 697.Google Scholar
  367. Montai, M., 1974, Lipid-protein assembly and the reconstitution of biological membranes, in: Perspectives in Membrane Biology, (S. Estrada-O and C. Gitler, eds.), pp. 591–622, Academic Press, New York, San Francisco, London.Google Scholar
  368. Moor, H., 1964, Die Gefrierfixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie, Z. Zellforsch. 62: 546.PubMedCrossRefGoogle Scholar
  369. Moor, H., 1965, Die Gefrierätzung; Präparationstechnik für elektronenmikroskopische Untersuchungen an lebenden Zellen und Geweben, Balzers-Fachber 2: 1.Google Scholar
  370. Moor, H., 1971, Recent progress in the freeze-etching technique, Philos. Trans. R. Soc. London, Ser. B 261: 121.PubMedCrossRefGoogle Scholar
  371. Moor, H., 1973, Evaporation and electron guns, in: Freeze-Etching, Techniques and Applications, ( E. L. Benedetti and P. Favard, eds.), pp. 27–30, Société Française de Microscopie Électronique, Paris.Google Scholar
  372. Moor, H., and Höchli, M., 1970, The influence of high-pressure freezing on living cells, Proceedings of the Seventh International Congress on Electron Microscopy, Grenoble, Vol. I, (P. Favard, ed.), pp. 445–446, Société Française de Microscopie Électronique, Paris.Google Scholar
  373. Moor, H., and Mühlethaler, K., 1963, Fine structure in frozen etched yeast cells, J. Cell Biol. 17: 609.PubMedCrossRefGoogle Scholar
  374. Moor, H., and Riehle, U., 1968, A new-fixation technique for freeze-etching, in: Proceedings of the Fourth Regional European Conference for Electron Microscopy, Vol. 2, ( O. S. Bocciarelli, ed.), pp. 33–34, Tipografia Poliglotta Vaticana, Rome.Google Scholar
  375. Moor, H., Mühlethaler, K., Waldner, H., and Frey-Wyssling, A., 1961, A new freezing ultramicrotome, J. Biophys. Biochem. Cytol. 10: 1.PubMedCrossRefGoogle Scholar
  376. Morel, F. M. M., Baker, R. F., and Wayland, H., 1971, Quantitation of human red blood cell fixation by glutaraldehyde, J. Cell Biol. 48: 91.PubMedCrossRefGoogle Scholar
  377. Moretz, R. C., Akers, C. K., and Parsons, D. F., 1969a, Use of small angle X-ray diffraction to investigate disordering of membranes during preparation for electron microscopy. I. Osmium tetroxide and potassium permanganate, Biochim. Biophys. Acta 193: 1.PubMedCrossRefGoogle Scholar
  378. Moretz, R. C., Akers, C. K., and Parsons, D. F., 1969b, Use of small angle X-ray diffraction to investigate disordering of membranes during preparation for electron microscopy. II. Aldehydes, Biochim. Biophys. Acta 193: 12.PubMedCrossRefGoogle Scholar
  379. Müller, G., 1972, Beiträge zur Methodik und Deutung der Negativkontrastierung, J. Ultrastruct. Res. 39: 77.PubMedCrossRefGoogle Scholar
  380. Munn, E. A., 1974, The application of the negative staining technique to the study of membranes, in: Methods in Enzymology, Vol. XXXII, ( S. Fleischer and L. Packer, eds.), pp. 20–35, Academic Press, New York, San Francisco, London.Google Scholar
  381. Muscatello, U., and Carafoli, E., 1969, The oxidation of exogenous and endogenous cytochrome c in mitochondria. A biochemical and ultrastructural study, J. Cell Biol. 40: 602.PubMedCrossRefGoogle Scholar
  382. Muscatello, U., and Home, R. W., 1968, Effect of the tonicity of some negative staining solutions on the elementary structure of membrane-bounded systems, J. Ultrastruct. Res. 25: 73.PubMedCrossRefGoogle Scholar
  383. Nakane, P. K., 1971, Application of peroxidase-labelled antibodies to the intracellular localization of hormones, Acta Endocrino!. Suppl. (Kbh.) 153: 190.Google Scholar
  384. Nakane, P. K., and Pierce, G. B., 1966, Enzyme-labeled antibodies. Preparation and application for the localization of antigens, J. Histochem. Cytochem. 14: 929.PubMedCrossRefGoogle Scholar
  385. Nakane, P. K., and Pierce, G. B., 1967, Enzyme-labeled antibodies for the light and electron microscopic localization of tissue antigens, J. Cell Biol. 33: 307.PubMedCrossRefGoogle Scholar
  386. Nanninga, N., 1971, Uniqueness and location of the fracture plane in the plasma membrane of Bacillus subtilis, J. Cell Biol. 49: 564.CrossRefGoogle Scholar
  387. Napolitano, L. M., and Scallen, T. J., 1969, Observations on the fine structure of peripheral nerve myelin, Anat. Rec. 163: 1.PubMedCrossRefGoogle Scholar
  388. Napolitano, L. M., LeBaron, F., and Scaletti, J., 1967, Preservation of myelin lamellar structure in the absence of lipid. A correlated chemical and morphological study, J. Cell Biol. 34: 817.PubMedCrossRefGoogle Scholar
  389. Nermut, M. V., and Ward, B. J., 1974, Effect of fixatives on fracture plane in red blood cells, J. Microsc. 102: 29.PubMedCrossRefGoogle Scholar
  390. Newman, S. B., Borysko, E., and Swerdlow, M., 1949, Ultra-microtomy by a new method, J. Res. Natl. Bureau Standards (USA), Research Paper RP 2020, 43: 183.CrossRefGoogle Scholar
  391. Nicolson, G. L., 1973, Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase c, and pH on the topography of bound positively charged colloidal particles, J. Cell Biol. 57: 373.PubMedCrossRefGoogle Scholar
  392. Nicolson, G. L., and Painter, R. G., 1973, Anionic sites of human erythrocyte membranes. IT. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles, J. Cell Biol. 59: 395.PubMedCrossRefGoogle Scholar
  393. Nicolson, G. L., and Singer, S. J., 1971, Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: application to saccharides bound to cell membranes, Proc. Natl. Acad. Sci. USA 68: 942.PubMedCrossRefGoogle Scholar
  394. Nicolson, G. L., Marchesi, V. T., and Singer, S. J., 1971, The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies, J. Cell Biol. 51: 265.PubMedCrossRefGoogle Scholar
  395. Niehaus, W. G., and Wold, F., 1970, Cross-linking of erythrocyte membranes with di-methyl adipimidate, Biochim. Biophys. Acta 196: 170.PubMedCrossRefGoogle Scholar
  396. Nir, I., and Hall, M. O., 1974, The ultrastructure of lipid-depleted rod photoreceptor membranes, J. Cell Biol. 63: 587PubMedCrossRefGoogle Scholar
  397. Oda, T., and Seki, S., 1966, Molecular basis of structure and function of the plasma membrane of the microvilli of intestinal ephithelial cells, in: Proceedings of the Sixth International Congress on Electron Microscopy, Vol. II, ( R. Uyeda, ed.), pp. 387–388. Maruzen Co, Tokyo.Google Scholar
  398. Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature (London) New Biol. 333: 149.Google Scholar
  399. Ogawa, K., Saito, T., and Mayahara, H., 1968, The site of ferricyanide reduction by reductases within mitochondria as studied by electron microscopy, J. Histochem. Cytochem. 16: 49.PubMedCrossRefGoogle Scholar
  400. Oleszko, S., and Moudrianakis, E. N., 1974, The visualization of photosynthetic coupling factor in embedded spinach chloroplasts, J. Cell Biol. 63: 936.PubMedCrossRefGoogle Scholar
  401. Ongun, A., Thomson, W. W., and Mudd, J. B., 1968, Lipid fixation during preparation of chloroplasts for electron microscopy, J. Lipid Res. 9: 416.PubMedGoogle Scholar
  402. Orwin, D. F. G., Thomson, R. W., and Flower, N. E. 1973, Plasma membrane differentiations of keratinizing cells of the wool follicle, J. Ultrastruct. Res. 45: 1.PubMedCrossRefGoogle Scholar
  403. Oschman, J. L., and Wall, B. J., 1972, Calcium binding to intestinal membranes, J. Cell Biol. 55: 58.PubMedCrossRefGoogle Scholar
  404. Oschman, J. L., Hall, T. A., Peters, P. D., and Wall, B. J., 1974, Association of calcium with membranes of squid giant axon. Ultrastructure and microprobe analysis, J. Cell Biol. 61: 156.PubMedCrossRefGoogle Scholar
  405. Ostrowski, K., Barnard, E. A., Sawicki, W., Chorzelski, T., Langner, A., and Mikulski, A., 1970, Autoradiographic detection of antigens in cells using tritium-labeled antibodies, J. Histochem. Cytochem. 18: 490.PubMedCrossRefGoogle Scholar
  406. Ovtracht, L., and Thiéry, J. P., 1972, Mise en évidence par cytochimie ultrastructurale de compartiments physiologiquement différents dans une même saccule golgien, J. Microscopie 15: 135.Google Scholar
  407. Packer, L., Williams, M. A., and Criddle, R. S., 1973, Freeze-fracture studies on mitochondria from wild-type and respiratory-deficient yeasts, Biochim. Biophys. Acta 292: 92.PubMedCrossRefGoogle Scholar
  408. Palade, G. E., 1952, A study of fixation for electron microscopy, J. Exp. Med. 95: 285.PubMedCrossRefGoogle Scholar
  409. Park, R. B., and Biggins, J., 1964, Quantasome: Size and composition, Science 144: 1009.PubMedCrossRefGoogle Scholar
  410. Park, R. B., and Branton, D., 1966, Freeze-etching of chloroplasts from glutaraldehyde fixed leaves, Brookhaven Symp. Biol. 19: 341.PubMedGoogle Scholar
  411. Parr, E. L., and Oei, J. S., 1973, Immobilization of membrane H-2 antigens by para-formaldehyde fixation, J. Cell Biol. 59: 537.PubMedCrossRefGoogle Scholar
  412. Parry, D. M., and Blackett, N. M., 1973, Electron microscope autoradiography of erythroid cells using radioactive iron, J. Cell Biol. 57: 16.PubMedCrossRefGoogle Scholar
  413. Parsons, D. F., and Subjeck, J. R., The morphology of the polysaccharide coat of mammalian cells, Biochim. Biophys. Acta 265: 85.Google Scholar
  414. Parsons, J. A., and Erlandsen, S. L., 1974. Ultrastructural immunocytochemical localization of prolactin in rat anterior pituitary by use of the unlabeled antibody enzyme method, J. Histochem. Cytochem. 22: 340.PubMedCrossRefGoogle Scholar
  415. Pearse, A. G. E., 1968, Histochemistry, Theoretical and Applied, Vol. 1, 3rd ed., Churchill, London.Google Scholar
  416. Pease, D. C., 1960, 1964, Histological Techniques for Electron Microscopy, 1st and 2nd ed., Academic Press, New York, London.Google Scholar
  417. Pease, D. C., 1966, The preservation of unfixed cytological detail by dehydration with “inert” agents, J. Ultrastruct. Res. 14: 356.PubMedCrossRefGoogle Scholar
  418. Pease, D. C., 1967, Eutectic ethylene glycol and pure propylene glycol as substituting media for the dehydration of frozen tissue, J. Ultrastruct. Res. 21: 75.PubMedCrossRefGoogle Scholar
  419. Pease, D. C., 1973a, Glycol methacrylate copolymerized with glutaraldehyde and urea as an embedment retaining lipids, J. Ultrastruct. Res. 45: 124.PubMedCrossRefGoogle Scholar
  420. Pease, D. C., 1973b, Substitution techniques, in: Advanced Techniques in Biological Electron Microscopy, ( J. K. Koehler, ed.), pp. 35–66, Springer Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  421. Pease, D. C., and Peterson, R. G., 1972, Polymerizable glutaraldehyde—urea mixtures as polar, water-containing embedding media, J. Ultrastruct. Res. 41: 133.PubMedCrossRefGoogle Scholar
  422. Peracchia, C., 1973a, Low resistance junctions in crayfish. I. Two arrays of globules in junctional membranes, J. Cell Biol. 57: 54.PubMedCrossRefGoogle Scholar
  423. Peracchia, C., 1973b, Low resistance junctions in crayfish. II. Structural details and further evidence for intercellular channels by freeze-fracture and negative staining, J. Cell Biol. 57: 66.PubMedCrossRefGoogle Scholar
  424. Peracchia, C., and Dúlhunty, A. F., 1974, Gap junctions: structural changes associated with changes in permeability, J. Cell Biol. 63: 263a.Google Scholar
  425. Peracchia, C., and Mittler, B. S., 1972a, Fixation by means of glutaraldehyde—hydrogen peroxide reaction products, J. Cell Biol. 53: 234.PubMedCrossRefGoogle Scholar
  426. Peracchia, C., and Mittler, B. S., 1972h, New glutaraldehyde fixation procedures, J. Ultrastruct. Res. 39: 57.PubMedCrossRefGoogle Scholar
  427. Peracchia, C., and Robertson, J. D., 1971, Increase in osmiophilia of axonal membranes of crayfish as a result of electrical stimulation, asphyxia, or treatment with reducing agents, J. Cell Biol. 51: 223.PubMedCrossRefGoogle Scholar
  428. Perkins, W. D., Karnovky, M. J., and Unanue, E. R., 1972, An ultrastructural study of lymphocytes with surface-bound immunoglobulin, J. Exp. Med. 135: 267.Google Scholar
  429. Peters, A., Hinds, P. L., and Vaughn, J. E., 1971, Extent of stain penetration in sections prepared for electron microscopy, J. Ultrastruct. Res. 36: 37.PubMedCrossRefGoogle Scholar
  430. Peters, T., and Ahsley, C. A., 1967, An artifact in radioautography due to binding of free amino acids to tissues by fixatives, J. Cell Biol. 33: 53.PubMedCrossRefGoogle Scholar
  431. Peterson, R. G., and Pease, D. C., 1972, Myelin embedded in polymerized glutaraldehydeurea, J. Ultrastruct. Res. 41: 115.PubMedCrossRefGoogle Scholar
  432. Petrali, J. P., Hinton, D. M., Moriarty, G. C., and Sternberger, L. A., 1974, The unlabeled antibody enzyme method of immunocytochemistry. Quantitative comparison of sensitivities with and without peroxidase—antiperoxidase complex, J. Histochem. Cytochem. 22: 782.Google Scholar
  433. Pinto Da Silva, P., 1971, Freeze-fracture of dipalmitoyl lecithin vesicles, J. Microscopic 12: 185.Google Scholar
  434. Pinto Da Silva, P., 1972, Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation, J. Cell Biol. 53: 777.CrossRefGoogle Scholar
  435. Pinto Da Silva, P., and Branton, D., 1970, Membrane splitting in freeze-etching, J. Cell Biol. 45: 598.CrossRefGoogle Scholar
  436. Pinto Da Silva, P., and Branton, D., 1972, Membrane intercalated particles: The plasma membrane as a planar fluid domain, Chem. Phys. Lipids 8: 265.CrossRefGoogle Scholar
  437. Pinto Da Silva, P., and Gilula, N. B., 1972, Gap junctions in normal and transformed fibroblasts in culture, Exp. Cell Res. 71: 393.CrossRefGoogle Scholar
  438. Pinto Da Silva, P., and Martinez-Palomo, A., 1974, Induced redistribution of membrane particles, anionic sites and Con A receptors in Entamoeba histolytica, Nature (Land.) 249: 170.CrossRefGoogle Scholar
  439. Pinto Da Silva, P., and Miller, R. G., 1975, Membrane particles on fracture faces of frozen myelin, Proc. Natl. Acad. Sci. USA 72: 4046.CrossRefGoogle Scholar
  440. Pinto Da Silva, P., and Nicolson, G. L., 1974, Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes, Biochim. Biophys. Acta 363: 311.CrossRefGoogle Scholar
  441. Pinto Da Silva, P., Douglas, S. D., and Branton, D., 1971, Localization of A antigen sites on human erythrocyte ghosts, Nature (Lond.) 232: 194.CrossRefGoogle Scholar
  442. Plattner, H., 1971, Bull spermatozoa: A re-investigation by freeze-etching using widely different cryofixation procedures, J. Submicrosc. Cytol. 3: 19.Google Scholar
  443. Plattner, H., 1973, Quantitative correlation of structure and function on biomembranes, Prog. Histochem. Cytochem. 5 (3): 1.PubMedCrossRefGoogle Scholar
  444. Plattner, H., 1974, Intramembraneous changes on cationophore-triggered exocytosis in Paramecium, Nature (Lond.) 252: 722.CrossRefGoogle Scholar
  445. Plattner, H., 1975, Ciliary granule plaques: Membrane-intercalated particle aggregates associated with Cat+-binding sites in Paramecium, J. Cell Sci. 18: 257.Google Scholar
  446. Plattner, H., and Fuchs, S., 1975, X-ray microanalysis of calcium binding sites in Paramecium, with special reference to exocytosis, Histochemistry 45: 23.PubMedCrossRefGoogle Scholar
  447. Plattner, H., Salpeter, M. M., Saltzgaber, J., and Schatz, G., 1970, Promitochondria of anaerobically grown yeast. IV. Conversion into respiring mitochondria, Proc. Natl. Acad. Sci. USA 66: 1252.PubMedCrossRefGoogle Scholar
  448. Plattner, H., Fischer, W. M., Schmitt, W. W., and Bachmann, L., 1972, Freeze-etching of cells without cryoprotectants, J. Cell Biol. 53: 116.PubMedCrossRefGoogle Scholar
  449. Plattner, H., Miller, F., and Bachmann, L., 1973a, Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis, J. Cell Sci. 13: 687.PubMedGoogle Scholar
  450. Plattner, H., Schmitt-Fumian, W. W., and Bachmann, L., 1973h, Cryofixation of single cells by spray-freezing, in: Freeze-Etching. Techniques and Applications, ( E. L. Benedetti and P. Favard, eds.), pp. 81–100, Société Française de Microscopie Électronique, Paris.Google Scholar
  451. Plattner, H., Wolfram, D., Bachmann, L., and Wachter, E., 1975, Tracer and freeze-etching analysis of intracellular membrane-junctions including exocytosis sites in Paramecium. With a note on a new hemenonapeptide tracer, Histochemistry 45: 1.PubMedCrossRefGoogle Scholar
  452. Pockrandt-Hemstedt, H., Schmitz, J. E., Kinne-Saffran, E., and Kinne, R., 1972, Morphologische und biochemische Untersuchungen über die Oberflächenstruktur der Bürstensaummembran der Rattenniere, Pflüger’s Arch. 333: 297.PubMedCrossRefGoogle Scholar
  453. Polak, J. M., Kendall, P. A., Heath, C. M., and Pearse, A. G. E., 1972, Carbodiimide fixation for electron microscopy and immunolectron cytochemistry, Experientia 28: 368.PubMedCrossRefGoogle Scholar
  454. Quintarelli, G., Bellocci, M., and Geremia, R., 1973, On phosphotungstic acid staining. IV. Selectivity of the staining reaction, J. Histochem. Cytochem. 21: 155.PubMedCrossRefGoogle Scholar
  455. Racker, E., 1970, Function and structure of the inner membrane of mitochondria and chloroplasts, in: Membranes of Mitochondria and Chloroplasts, ( E. Racker, ed.), pp. 127–171, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  456. Racker, E., Tyler, D. D., Estabrook, R. W., Conover, T. E., Parsons, D. F., and Chance, B., 1965, Correlations between electron-transport activity, ATP-ase, and morphology of submitochondrial particles in: Oxidases and Related Systems, Vol. 2, (T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 1077–1094, John Wiley and Sons Inc., New York.Google Scholar
  457. Racker, E., Horstman, L. L., Kling, D., and Fessenden-Raden, J. M., 1969, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXI. Resolution of submitochondrial particles from bovine heart mitochondria with silicotungstate, J. Biol. Chem. 244: 6668.PubMedGoogle Scholar
  458. Rambourg, A., 1969, Localization ultrastructurale et nature du matériel coloré au niveau de la surface cellulaire par la mélange chromique-phosphotungstique, J. Microscop. 8: 325.Google Scholar
  459. Rambourg, A., 1971, Morphological and histochemical aspects of glycoproteins at the surface of animal cells, Int. Rev. Cytol. 31: 57.PubMedCrossRefGoogle Scholar
  460. Rambourg, A., Neutra, M., and Leblond, C. P., 1966, Presence of a “cell coat” rich in carbohydrate at the surface of cells in the rat, Anat. Rec. 154: 41.PubMedCrossRefGoogle Scholar
  461. Rang, H. P., 1975, Acetylcholine receptors, Quart. Rev. Biophys. 7: 283.CrossRefGoogle Scholar
  462. Rash, J. E., and Ellisman, M. H., 1974, Studies of excitable membranes. I. Macromolecular specializations of the neuromuscular junction and the nonjunctional sarcolemma, J. Cell Biol. 63: 567.PubMedCrossRefGoogle Scholar
  463. Rash, J. E., Staehelin, L. A., and Ellisman, M. H., 1974, Rectangular arrays of particles on freeze-cleaved plasma membranes are not gap junctions, Exp. Cell Res. 86: 187.PubMedCrossRefGoogle Scholar
  464. Rasmussen, K. E., and Albrechtsen, J., 1974, Glutaraldehyde. The influence of pH, temperature, and buffering on the polymerization rate, Histochemistry 38: 19.CrossRefGoogle Scholar
  465. Rebhun, L. I., 1972, Freeze-substitution and freeze-drying, in: Principles and Techniques of Electron Microscopy. Biological Applications, Vol. 2, ( M. A. Hayat, ed.), pp. 1–49, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  466. Reese, T. S., Bennett, M. V. L., and Feder, N., 1971, Cell-to-cell movement of peroxidases injected into the septate axon of crayfish, Anat. Rec. 169: 409.Google Scholar
  467. Reid, N., 1974, Ultramicrotomy, in: Practical Methods in Electron Microscopy, ( A. M. Glauert, ed.), North-Holland Publishing Company, Amsterdam, Oxford.Google Scholar
  468. Reimer, L., 1965, Irradiation changes in organic and inorganic objects, Lab. Invest. 14: 1082.PubMedGoogle Scholar
  469. Reimer, L., 1967, Elektronenmikroskopische Untersuchungs-und Präparationsmethoden, 2nd edition, Springer Verlag, Berlin, Göttingen, Heidelberg.CrossRefGoogle Scholar
  470. Reimer, L., and Hermann, W., 1962, Dichte und Teilchengrößenbestimmung an PlatinKohle-Mischschichten, Naturwissenschaften 49: 296.CrossRefGoogle Scholar
  471. Reimer, L., and Schulte, C., 1966, Elektronenmikroskopische Oberflächenabdrücke und ihr Auflösungsvermögen, Naturwissenschaften 53: 489.PubMedCrossRefGoogle Scholar
  472. Reith, A., 1972, Intramitochondrial localization of glycerol phosphate dehydrogenase. A possible marker enzyme for the proliferation of mitochondria, Cytobiologie Z. Exp. Zellforsch. 5: 384.Google Scholar
  473. Reith, A., and Schüler, B., 1972, Demonstration of cytochrome oxidase activity with diaminobenzidine. A biochemical and electron microscopic study, J. Histochem. Cytochem. 20: 583.PubMedCrossRefGoogle Scholar
  474. Rendi, R., and Vatter, A. E., 1967, Possible location of phospholipids and structural protein in mitochondrial membranes, Protoplasma 63: 202.PubMedCrossRefGoogle Scholar
  475. Revel, J. P., and Karnovsky, M. J., 1967, Hexagonal array of subunits in intercellular junctions of the mouse heart and liver, J. Cell Biol. 33: C7.PubMedCrossRefGoogle Scholar
  476. Revel, J. P., Yee, A. G., and Hudspeth, A. J., 1971, Gap junctions between electrotonically coupled cells in tissue culture and in brown fat, Proc. Natl. Acad. Sci. USA 68: 2924.PubMedCrossRefGoogle Scholar
  477. Reynolds, E. S., 1963, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol. 17: 208.PubMedCrossRefGoogle Scholar
  478. Richards, F. M., and Knowles, J. R., 1968, Glutaraldehyde as a protein crosslinking reagent, J. Mol. Biol. 37: 231.PubMedCrossRefGoogle Scholar
  479. Riehle, U., 1968, Schnellgefrieren organischer Präparate für die Elektronenmikroskopie, Chem. Ing. Technol. 40: 213.CrossRefGoogle Scholar
  480. Riehle, U., and Höchli, M., 1973, The theory and technique of high pressure freezing, in: Freeze-Etching. Techniques and Applications, ( E. L. Benedetti and P. Favard, eds.), pp. 31–61, Société Française de Microscopie Électronique, Paris.Google Scholar
  481. Riemersma, J. C., 1963, Osmium tetroxide fixation of lipids: Nature of the reaction products, J. Histochem. Cytochem. 11: 436.CrossRefGoogle Scholar
  482. Riemersma, J. C., 1966, Data presented at the International Symposium on Electron Microscopy and Cytochemistry, (Leiden, May 31-June 4, 1966 ).Google Scholar
  483. Riemersma, J. C., 1968, Osmium tetroxide fixation of lipids for electron microscopy. A possible reaction mechanism, Biochim. Biophys. Acta 152: 718.PubMedCrossRefGoogle Scholar
  484. Riemersma, J. C., and Booij, H. L., 1962, The reaction of osmium tetroxide with lecithin: Application of staining procedures, J. Histochem. Cytochem. 10: 89.CrossRefGoogle Scholar
  485. Robbins, E., and Jentzsch, G., 1967, Rapid embedding of cell culture monolayers and suspensions for electron microscopy, J. Histochem. Cytochem. 15: 181.PubMedCrossRefGoogle Scholar
  486. Robertson, E. A., and Schultz, R. L., 1970, The impurities in commercial glutaraldehyde and their effect on the fixation of brain, J. Ultrastruct. Res. 30: 275.PubMedCrossRefGoogle Scholar
  487. Robertson, J. D., 1957, New observations on the ultrastructure of the membranes of frog peripheral nerve fibres, J. Biophys. Biochem. Cytol. 3: 1043.PubMedCrossRefGoogle Scholar
  488. Robertson, J. D., 1958, Structural alterations in nerve fibers produced by hypotonie and hypertonie solutions, J. Biophys. Biochem. Cytol. 4: 349.PubMedCrossRefGoogle Scholar
  489. Robertson, J. D., 1959, The ultrastructure of cell membranes and their derivatives, Biochem. Soc. Symp. 16: 3.PubMedGoogle Scholar
  490. Robertson, J. G., and Parsons, D. F., 1970, Myelin structure and retention of cholesterol in frog sciatic nerve embedded in a resorcinol—formaldehyde resin, Biochim. Biophys. Acta 219: 379.PubMedCrossRefGoogle Scholar
  491. Robison, W. G., and Lipton, B. H., 1969, Advantages of dichromate—acrolein fixation for preservation of ultrastructural detail, J. Cell Biol. 43: 117a.CrossRefGoogle Scholar
  492. Roozemond, R. C., 1969, The effect of fixation with formaldehyde and glutaraldehyde on the composition of phospholipids extractable from rat hypothalamus, J. Histochem. Cytochem. 17: 482.PubMedCrossRefGoogle Scholar
  493. Rosenberg, M., Bart!, P., and Lesko, L., 1960, Water-soluble methacrylate as an embedding medium for the preparation of ultrathin sections, J. Ultrastruct. Res. 4: 298.PubMedCrossRefGoogle Scholar
  494. Russ, J. C., 1974, X-ray microanalysis in the biological sciences, J. Submicrosc. Cytol. 6: 55.Google Scholar
  495. Ryter, A., and Kellenberger, E., 1958, L’inclusion au polyester pour l’ultramicrotomie, J. Ultrastruct. Res. 2: 200.PubMedCrossRefGoogle Scholar
  496. Sabatini, D. D., Bensçh, K., and Barrnett, R. J., 1963, Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation, J. Cell Biol. 17: 19.PubMedCrossRefGoogle Scholar
  497. Salema, R., and Brandäo, 1., 1973, The use of PIPES buffer in the fixation of plant cells for electron microscopy, J. Submicrosc. Cytol. 5: 79.Google Scholar
  498. Salpeter, M. M., and Bachmann, L., 1972, Autoradiography, in: Principles and Techniques of Electron Microscopy. Biological Applications, Vol. 2, (M. A. Hayat, ed.), pp. 219278, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  499. Salpeter, M. M., and McHenry, F. A., 1973, Electron microscopy autoradiography. Analyses of autoradiograms, in: Advanced Techniques in Biological Electron Microscopy, ( J. K. Koehler, ed.), pp. 113–152, Springer Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  500. Salpeter, M. M., Plattner, H., and Rogers, A. W., 1972, Quantitative assay of esterases in endplates of mouse diaphragm by electron microscope autoradiography, J. Histochem. Cytochem. 20: 1059.PubMedCrossRefGoogle Scholar
  501. Satir, P., and Gilula, N. B., 1973, The fine structure of membranes and intercellular communication in insects, Ann. Rev. Entomol. 18: 143.CrossRefGoogle Scholar
  502. Saunders, D. R., Wilson, J., and Rubin, C. E., 1968, Loss of absorbed lipid during fixation and dehydration of jejunal mucosa, J. Cell Biol. 37: 183.PubMedCrossRefGoogle Scholar
  503. Scallen, T. J., and Dietert, S. E., 1969, The quantitative retention of cholesterol in mouse liver prepared for electron microscopy by fixation in a digitonin-containing aldehyde solution, J. Cell Biol. 40: 802.PubMedCrossRefGoogle Scholar
  504. Schatzki, P. F., and Newsome, A., 1973, Particle size of lanthanum salts used as ultra-structural tracers, J. Cell Biol. 59: 304a.CrossRefGoogle Scholar
  505. Schidlovsky, G., 1965, Contrast in multilayer systems after various fixations, Lab. Invest. 14: 1213.PubMedGoogle Scholar
  506. Schiske, P., 1968, Zur Frage der Bildrekonstruktion durch Fokusreihen, In Proceedings of the Fourth Regional European Conference on Electron Microscopy, Vol. 1, ( D. S. Bocciarelli, ed.), pp. 145–146, Tipografia Poliglotta Vaticana, Rome.Google Scholar
  507. Schmidt, W. J., 1936, Doppelbrechung und Feinbau der Markscheide der Nervenfasern, Z. Zellforsch. Mikrosk. Anat. 23: 657.CrossRefGoogle Scholar
  508. Schmitt, F. O., Bear, R. S., and Clark, G. L., 1935, X-ray diffraction studies on nerve, Radiology 25: 131.Google Scholar
  509. Schmitt, W. W., Zingsheim, H. P., and Bachmann, L., 1970, Investigation of molecular and micellar solutions by freeze etching, In Proceedings of the Seventh International Conference on Electron Microscopy, Grenoble, Vol. I, ( P. Favard, ed.), pp. 455–456, Société Française de Microscopie Électronique, Paris.Google Scholar
  510. Schultz, S. G., and Solomon, A. K., 1961, Determination of effective hydrodynamic radii of small molecules by viscosimetry, J. Gen. Physiol. 44: 1189.PubMedCrossRefGoogle Scholar
  511. Seeman, P., 1974, Ultrastructure of membrane lesions in immune lysis, osmotic lysis and drug-induced lysis, Fed. Proc. 33: 2116.PubMedGoogle Scholar
  512. Segrest, J. P., Gulik-Krzywicki, T., and Sardet, C., 1974, Association of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles, Proc. Natl. Acad. Sci. USA 71: 3294.PubMedCrossRefGoogle Scholar
  513. Seligman, A. M., Karnovsky, M. J., Wasserkrug, H. L., and Hanker, J. S., 1968, Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB), J. Cell Biol. 38: 1.PubMedCrossRefGoogle Scholar
  514. Shah, D. O., 1969, Interaction of uranyl ions with phospholipid and cholesterol monolayers, J. Colloid Interface Sci. 29: 210.PubMedCrossRefGoogle Scholar
  515. Shah, D. O., 1970, The effect of potassium permanganate on lecithin and cholesterol monolayers, Biochim. Biophys. Acta 211: 358.CrossRefGoogle Scholar
  516. Shea, S. M., 1971, Lanthanum staining of the surface coat of cells. Its enhancement by the use of fixatives containing Alcian blue or cetylpyridinium chloride, J. Cell Biol. 51: 611.PubMedCrossRefGoogle Scholar
  517. Shechter, E., Letelier, L., and Gulik-Krzywicki, T., 1974, Relations between structure and function in cytoplasmic membrane vesicles isolated from an Escherichia coli fatty-acid auxotroph, high angle X-ray diffraction, freeze-etch electron microscopy and transport studies, Eur. J. Biochem. 49: 61.PubMedCrossRefGoogle Scholar
  518. Shnitka, T. K., and Seligman, A. M., 1971, Ultrastructural localization of enzymes, Ann. Rev. Biochem. 40: 375.PubMedCrossRefGoogle Scholar
  519. Sies, H., Herzog, V., and Miller, F., 1972, Electron microscopic and spectrophotometric studies on mitochondrial and peroxisomal reactions with diaminobenzidine in hemaglobin-free perfused rat liver, in: Proceedings of the Fifth European Congress on Electron Microscopy, ( V. E. Cosslett, ed.), pp. 274–275, The Institute of Physics, London, Bristol.Google Scholar
  520. Siess, E., Wieland, O., and Miller, F., 1971, A simple method for the preparation of pure and active y-globulin—ferritin conjugates using glutaraldehyde, Immunology 20: 659.PubMedGoogle Scholar
  521. Silva, M. T., Carvalho Guerra, F., and Magalhäes, M. M., 1968, The fixative action of uranyl acetate in electron microscopy, Experientia 24: 1074.PubMedCrossRefGoogle Scholar
  522. Silva, M. T., Santos Mota, J. M., Melo, J. V. C., and Carvalho Guerra, F., 1971, Uranyl salts as fixatives for electron microscopy. Study of the membrane ultrastructure and phospholipid loss in Bacilli, Biochim. Biophys. Acta 233: 513.PubMedCrossRefGoogle Scholar
  523. Simionescu, N., Simionescu, M., and Palade, G. E., 1972, Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens, J. Cell Biol. 53: 365.PubMedCrossRefGoogle Scholar
  524. Simionescu, N., Simionescu, M., and Palade, G. E., 1973, Permeability of muscle capillaries to exogenous myoglobin, J. Cell Biol. 57: 424.PubMedCrossRefGoogle Scholar
  525. Simionescu, N., Simionescu, M., and Palade, G. E., 1975, Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels, J. Cell Biol. 64: 586.PubMedCrossRefGoogle Scholar
  526. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720.PubMedCrossRefGoogle Scholar
  527. Singer, S. J., and Schick, A. F., 1961, The properties of specific stains for electron microscopy prepared by the conjugation of antibody molecules with ferritin, J. Biophys. Biochem. Cytol. 9: 519.PubMedCrossRefGoogle Scholar
  528. Singer, S. J., Painter, R. G., and Tokuyasu, K. T., 1973, Ferritin-antibody staining of ultrathin frozen sections, in: Electron Microscopy and Cytochemistry, (E. Wisse, W. T. Daems, I. Molenaar, and P. VanDuijn, eds.), pp. 171–180, North-Holland Publishing Company, Amsterdam.Google Scholar
  529. Sjöstrand, F. S., 1968, Ultrastructure and function of cellular membranes, in: The Membranes, ( A. J. Dalton and F. Haguenau, eds.), pp. 151–210, Academic Press, New York, London.Google Scholar
  530. Sjöstrand, F. S., and Barajas, L., 1968, Effect of modifications in conformation of protein molecules on structure of mitochondrial membranes, J. Ultrastruct. Res. 25: 121.PubMedCrossRefGoogle Scholar
  531. Sleytr, U., 1970, Die Gefrierätzung korrespondierender Bruchhälften: Ein neuer Weg zur Aufklärung von Membranstrukturen, Protoplasma 70: 101.PubMedCrossRefGoogle Scholar
  532. Sleytr, U. B., 1974, Freeze-fracturing at liquid helium temperature for freeze-etching, in: Proceedings of the Eighth International Congress on Electron Microscopy, Vol. II, ( J. V. Sanders and D. J. Goodchild, eds.), pp. 30–31, The Australian Academy of Science, Canberra.Google Scholar
  533. Sleytr, U. B., and Umrath, W., 1974, A simple device for obtaining complementary fracture planes at liquid helium temperature in the freeze-etching technique, J. Microscopy 101: 187.CrossRefGoogle Scholar
  534. Solomon, A. K., 1971, The state of water in red cells, Sci. Am. 224: 88.PubMedCrossRefGoogle Scholar
  535. Speth, V., and Wunderlich, F., 1973, Membranes of Tetrahymena. II. Direct visualization of reversible transitions in biomembrane structure induced by temperature, Biochim. Biophys. Acta 291: 621.PubMedCrossRefGoogle Scholar
  536. Speth, V., Wallach, D. F. H., Weidekamm, E., and Knüfermann, H., 1972, Micromorphologic consequences following perturbation of erythrocyte membranes by trypsin, phospholipase A, lysolecithin, sodium dodecylsulfate and saponin. A correlated freeze etch and biochemical study, Biochim. Biophys. Acta 255: 386.PubMedCrossRefGoogle Scholar
  537. Spurr, A. R., 1969, A low-viscosity epoxy resin embedding medium for electron microscopy, J. Ultrastruct. Res. 26: 31.PubMedCrossRefGoogle Scholar
  538. Staehelin, L. A., 1968, The interpretation of freeze etched artificial and biological membranes, J. Ultrastruct. Res. 22: 326.PubMedCrossRefGoogle Scholar
  539. Staehelin, L. A., 1972, Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze—etching, Proc. Natl. Acad. Sci. USA 69: 1318.PubMedCrossRefGoogle Scholar
  540. Staehelin, L. A., 1973, Analysis and critical evaluation of the information contained in freeze-etch micrographs, in: Freeze-Etching. Techniques and Applications, ( E. L. Benedetti and P. Favard, eds.), pp. 113–134, Société Française de Microscopie Électronique, Paris.Google Scholar
  541. Staehelin, L. A., 1974, Structure and function of intercellular junctions, Int. Rev. Cytol. 39: 191.PubMedCrossRefGoogle Scholar
  542. Staehelin, L. A., and Bertaud, W. S., 1971, Temperature and contamination dependent freeze-etch images of frozen water and glycerol solutions, J. Ultrastr. Res. 37: 146.CrossRefGoogle Scholar
  543. Staehelin, L. A., Mukherjee, T. M., and Williams, A. W., 1969, Freeze-etch appearance of the tight junctions in the epithelium of small and large intestine of mice, Protoplasma 67: 165.PubMedCrossRefGoogle Scholar
  544. Staehelin, L. A., Chlapowski, F. J., and Bonneville, M. A., 1972, Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images, J. Cell Biol. 53: 73.PubMedCrossRefGoogle Scholar
  545. Stäubli, W., 1963, A new embedding technique for electron microscopy, combining a water-soluble epoxy resin (Durcupan) with water-insoluble Araldite, J. Cell Biol. 10: 197.CrossRefGoogle Scholar
  546. Stäubli, W., Hess, R., and Weibel, E. R., 1969, Correlated morphometric and biochemical studies on the liver cell. 11. Effects of phenobarbital on rat hepatocytes, J. Cell Biol. 42: 92.PubMedCrossRefGoogle Scholar
  547. Steck, T. L., 1972, Crosslinking the major proteins of the isolated erythrocyte membrane, J. Mol. Biol. 66: 295.PubMedCrossRefGoogle Scholar
  548. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane. A review. J. Cell Biol. 62: 1.PubMedCrossRefGoogle Scholar
  549. Steck, T. L., Weinstein, R. S., Straus, J. H., and Wallach, D. F. H., 1970, Inside-out red cell membrane vesicles: Preparation and purification, Science 168: 255.PubMedCrossRefGoogle Scholar
  550. Steere, R. L., 1957, Electron microscopy of structural detail in frozen biological specimens, J. Biophys. Biochem. Cytol. 3: 45.PubMedCrossRefGoogle Scholar
  551. Steere, R. L., 1969, Freeze etching simplified, Cryobiology 5: 306.PubMedCrossRefGoogle Scholar
  552. Stein, O., and Stein, Y., 1967, Lipid synthesis, intracellular transport, storage and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol treated rats, J. Cell Biol. 33: 319.PubMedCrossRefGoogle Scholar
  553. Stein, O., Stein, Y., Goodman, D. S., and Fidge, N. H., 1969, The metabolism of chylomikron cholesteryl ester in rat liver. A combined radioautographic-electron microscopic and biochemical study, J. Cell Biol. 43: 410.PubMedCrossRefGoogle Scholar
  554. Sternberger, L. A., Hardy, P. H., Cuculis, J. J., and Meyer, H. G., 1970, The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen—antibody complex (horseradish peroxidase—antihorseradish peroxidase) and its use in identification of Spirochetes, J. Histochem. Cytochem. 18: 315.PubMedCrossRefGoogle Scholar
  555. Sterzing, P. R., and Napolitano, L. M., 1972, Tissue cholesterol preservation: Factors associated with retention of cholesterol in rat sciatic nerve fixed for electron microscopy, Anat. Rec. 173: 485.PubMedCrossRefGoogle Scholar
  556. Stewart, M., 1973, Organic stains for electron microscopy, J. Micr. 97: 381.CrossRefGoogle Scholar
  557. Stiles, J. W., and Crane, F. L., 1966, The demonstration of the elementary particles of mitochondrial membranes fixed with glutaraldehyde, Biochem. Biophys. Acta 126: 179.PubMedCrossRefGoogle Scholar
  558. Stirling, C. E., 1972, Radioautographic localization of sodium pump sites in rabbit intestine, J. Cell Biol. 53: 704.PubMedCrossRefGoogle Scholar
  559. Stoeckenius, W., 1960, Osmium tetroxide fixation of lipids, in: Proceedings of the European Regional Conference on Electron Microscopy, Vol. II, ( A. L. Houwink and B. J. Spit, eds.), pp. 716–720, Nederlandse Vereniging voor Electronemicroscopie, Delft.Google Scholar
  560. Stoeckenius, W., 1961, Electron microscopy of DNA molecules “stained” with heavy metal salts, J. Biophys. Biochem. Cytol. 11: 297.PubMedCrossRefGoogle Scholar
  561. Stoeckenius, W., 1962, Some electron microscopical observations on liquid—crystalline phases in lipid—water systems, J. Cell Biol. 12: 221.PubMedCrossRefGoogle Scholar
  562. Stoeckenius, W., 1963, Some observations on negatively stained mitochondria, J. Cell Biol. 17: 443.PubMedCrossRefGoogle Scholar
  563. Stoeckenius, W., 1970, Electron microscopy of mitochondrial and model membranes, in: Membranes of Mitochondria and Chloroplasts, ( E. Racker, ed.), pp. 53–90, Van No-strand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  564. Stoeckenius, W., and Engelman, D. M., 1969, Current models for the structure of biological membranes, J. Cell Biol. 42: 613.PubMedCrossRefGoogle Scholar
  565. Stoeckenius, W., and Kunau, W. H., 1968, Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes, J. Cell Biol. 38: 337.CrossRefGoogle Scholar
  566. Stoeckenius, W., and Mahr, S. C., 1965, Studies on the reaction of osmium tetroxide with lipids and related compounds, Lab. Invest. 14: 1196.PubMedGoogle Scholar
  567. Stoeckenius, W., Schulman, J. H., and Prince, L. M., 1960, The structure of myelin figures and microemulsions as observed with the electron microscope, Kolloid-Z. 169: 170.CrossRefGoogle Scholar
  568. Tanford, C., Buckley, C. E., DeParitosh, K., and Lively, E. P., 1962, Effect of ethylene glycol on the conformation of y-globulin and ß-lactoglobulin, J. Biol. Chem. 237: 1168.PubMedGoogle Scholar
  569. Telford, J. N., and Racker, E., 1973, A method for increasing contrast of mitochondrial inner membrane spheres in thin sections of Epon—Araldite embedded tissue, J. Cell Biol. 57: 580.PubMedCrossRefGoogle Scholar
  570. Thiéry, J. P., 1967, Mise en évidence des polysaccharides sur coupes fines en microscopie électronique, J. Microscopie 6: 987.Google Scholar
  571. Thomson, G. P., 1927, The diffraction of cathode rays by thin films of platinum, Nature (Lond.) 120: 802.CrossRefGoogle Scholar
  572. Thomson, G. P., 1928, Experiments on the diffraction of cathode rays, Proc. R. Soc. (London) 117A: 600.CrossRefGoogle Scholar
  573. Thon, F., 1966, Zur Defokussierungsabhängigkeit des Phasenkontrasts bei der elektronenmikroskopischen Abbildung, Z. Naturforsch. 21a: 476.Google Scholar
  574. Tillack, T. W., and Kinsky, S. C., 1973, A freeze-etch study of the effects of filipin on liposomes and human erythrocyte membranes, Biochim. Biophys. Acta 323: 43.PubMedCrossRefGoogle Scholar
  575. Tillack, T. W., and Marchesi, V. T., 1970, Demonstration of the outer surface of freezeetched red blood cell membranes, J. Cell Biol. 45: 649.PubMedCrossRefGoogle Scholar
  576. Tillack, T. W., Carter, R., and Razin, S., 1970, Native and reformed Mycoplasma laidlawii membranes compared by freeze etching, Biochim. Biophys. Acta 219: 123.PubMedCrossRefGoogle Scholar
  577. Tillack, T. W., Scott, R. E., and Marchesi, V. T., 1972, The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles, J. Exp. Med. 135: 1209.PubMedCrossRefGoogle Scholar
  578. Tokuyasu, K. T., 1973, A technique for ultracryotomy of cell suspensions and tissues, J. Cell Biol. 57: 551.PubMedCrossRefGoogle Scholar
  579. Tomimatsu, Y., Jansen, E. F., Gaffield, W., and Olsen, A. C., 1971, Physical chemical observations on the a-chymotrypsin—glutaraldehyde system during formation of an insoluble derivation, J. Colloid Interface Sci. 36: 51.CrossRefGoogle Scholar
  580. Tourtellotte, M. E., and Zupnik, J. S., 1973, Freeze-fractured Acholeplasma laidlawii membranes: Nature of particles observed, Science 179: 84.PubMedCrossRefGoogle Scholar
  581. Träuble, H., and Overath, P., 1973, The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta 307: 491.PubMedCrossRefGoogle Scholar
  582. Trump, B. F., and Bulger, R. E., 1966, New ultrastructural characteristics of cells fixed in a glutaraldehyde—osmium tetroxide mixture, Lab. Invest. 15: 368.PubMedGoogle Scholar
  583. Tsai, C. M., Huang, C. C., and Canellakis, E. S., 1974, Iodination of cell membranes. I. Optimal conditions for the iodination of exposed membrane components, Biochim. Biophys. Acta 332: 47.CrossRefGoogle Scholar
  584. Tsien, H. C., and Higgins, M. L., 1974, Effect of temperature on the distribution of membrane particles in Streptococcus faecalis as seen by the freeze-fracture technique, J. Bacteriol. 118: 725.PubMedGoogle Scholar
  585. Unanue, E. R., Perkins, W. D., and Karnovsky, M. J., 1972, Ligand induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography, J. Exp. Med. 136: 885.PubMedCrossRefGoogle Scholar
  586. Unwin, P. N. T., 1970, An electrostatic phase plate for the electron microscope, Ber. Dtsch. Bunsenges. Phys. Chem. 74: 1137.Google Scholar
  587. Unwin, P. N. T., 1972, Negative staining of biological specimens using mixture salts, in: Proceedings of the Fifth European Congress on Electron Microscopy, ( V. E. Cosslett, ed.), pp. 232–233, The Institute of Physics, London, Bristol.Google Scholar
  588. Unwin, P. N. T., 1974, Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. H. The influence of electron irradiation on the stain distribution, J. Mol. Biol. 87: 657.PubMedCrossRefGoogle Scholar
  589. Unwin, P. N. T., and Henderson, R., 1975, Molecular structure determination by electron microscopy of unstained crystalline specimens, J. Mol. Biol. 94: 425.PubMedCrossRefGoogle Scholar
  590. Vail, W. J., Papahadjopoulos, D., and Moscarello, M. A., 1974, Interaction of a hydrophobic protein with liposomes. Evidence for particles seen in freeze fracture as being proteins, Biochim. Biophys. Acta 345: 463.CrossRefGoogle Scholar
  591. Van Bruggen, E. F. J., Wiebenga, E. H., and Gruber, M., 1960, Negative-staining electron microscopy of proteins at pH values below their isoelectric points. Its application to hemocyanine, Biochim. Biophys. Acta 42: 171.CrossRefGoogle Scholar
  592. Vanderkooi, G., 1974, Organization of proteins in membranes with special reference to the cytochrome oxidase system, Biochim. Biophys. Acta 344: 307.PubMedCrossRefGoogle Scholar
  593. Van Gool, A. P., and Nanninga, N., 1971, Fracture faces in the cell envelope of Escherichia coli, J. Bacteriol. 108: 474.PubMedGoogle Scholar
  594. Van Harreveld, A., Crowell, J., and Malhotra, S. K., 1965, A study of extracellular space in central nervous tissue by freeze-substitution, J. Cell Biol. 25: 117.CrossRefGoogle Scholar
  595. Van Venrooij, G. E. P. M., Aertsen, A. M. H. J., Hax, W. M. A., Ververgaert, P. H. J. T., Verhoeven, J. J., and VanDerVorst, H. A., 1975, Freeze-etching: Freezing velocity and crystal size at different locations in samples, Cryobiology 12: 46.PubMedCrossRefGoogle Scholar
  596. Vhsquez, C., Parisi, M., and De Robertis, E., 1971, Fine structure of ultrathin artificial membranes. I. Changes by acetylcholine addition to lipid proteolipid membranes, J. Membr. Biol. 6: 353.CrossRefGoogle Scholar
  597. Venable, J. H., and Coggeshall, R., 1965, A simplified lead citrate stain for use in electron microscopy, J. Cell Biol. 25: 407.PubMedCrossRefGoogle Scholar
  598. Vergara, J., Zambrano, F., Robertson, J. D., and Elrod, H., 1974, Isolation and characterization of luminal membranes from urinary bladder, J. Cell Biol. 61: 83.PubMedCrossRefGoogle Scholar
  599. Verkleij, A. J., 1975, Architecture of Biological and Artificial Membranes as Visualized by Freeze-Etching, Ph. D. Thesis, State University of Utrecht.Google Scholar
  600. Verkleij, A. J., and Ververgaert, P. H. J. T., 1975, Architecture of biological and artificial membranes as visualized by freeze-etching, in: Annual Review of Physical Chemistry, Vol. 26, ( H. Eyring, ed.), pp. 101–122, Annual Reviews Inc., Palo Alto, California.Google Scholar
  601. Verkleij, A. J., Ververgaert, P. H. J. T., VanDeenen, L. L. M., and Elbers, P. F., 1972, Phase transitions of phospholipid bilayers and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy, Biochim. Biophys. Acta 288: 326.PubMedCrossRefGoogle Scholar
  602. Verkleij, A. J. DeKruijff, B., Gerritsen, W. F., Demel, R. A., VanDeenen, L. L. M., and Ververgaert, P. H. J. T., 1973, Freeze-etch electron microscopy of erythrocytes, Acholeplasma laidlawii cells and liposomal membranes after the action of filipin and amphotericin B, Biochim. Biophys. Acta 291: 577.PubMedCrossRefGoogle Scholar
  603. Ververgaert, P. H. J. T., Verkleij, A. J., Verhoeven, J. J., and Elbers, P. F., 1973, Spray-freezing of liposomes, Biochim. Biophys. Acta 311: 651.PubMedCrossRefGoogle Scholar
  604. Vogel], W., 1965, Phasen der Bildung morphologischer und enzymatischer Muster des Flugmuskels der Wanderheuschrecke, Naturwissenschaften 52: 405.CrossRefGoogle Scholar
  605. Wachstein, M., and Meisel, E., 1957, Histochemistry of hepatic phosphatases at a physiologic pH. With special reference to the demonstration of bile canaliculi, Am. J. Clin. Pathol. 27: 13.PubMedGoogle Scholar
  606. Wakabayashi, T., Asano, M., Kurono, C., and Kimura, H., 1975, Effects of extremely low concentrations of glutaraldehyde together with shortening of fixation times on the maintainance of various enzyme activities, J. Histochem. Cytochem. 23: 632.Google Scholar
  607. Wall, J. S., Isaacson, M. S., and Langmore, J. P., 1973, The collection of scattered electrons in dark field electron microscopy, 11. Inelastic scattering, Optik 39: 359.Google Scholar
  608. Wallach, D. F. H., and Zahler, P. H., 1966, Protein conformations in cellular membranes, Proc. Natl. Acad. Sci. USA 56: 1552.PubMedCrossRefGoogle Scholar
  609. Walther, J. A., and Hope, A. B., 1971, Nuclear magnetic resonance and the state of water in cells, Prog. Biophys. Mol. Biol. 23: 3.Google Scholar
  610. Warren, J. R., Spero, L., and Metzger, J. F., 1972, Factors controlling the cross-linking of proteins by formaldehyde, J. Cell Biol. 55: 274a.Google Scholar
  611. Watson, M. L., 1958a, Staining of tissue sections for electron microscopy with heavy metals, J. Biophys. Biochem. Cytol. 4: 475.PubMedCrossRefGoogle Scholar
  612. Watson, M. L., 1958b, Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium, J. Biophys. Biochem. Cytol. 4: 727.Google Scholar
  613. Weber, C., Franke, W. W., and Kartenbeck, J., 1974, Structure and biochemistry of phloem-proteins isolated from Cucurhita maxima, Exp. Cell Res. 87: 79.PubMedCrossRefGoogle Scholar
  614. Wehrli, E., Mühlethaler, K., and Moor, H., 1970, Membrane structure as seen with a double replica method for freeze-fracturing, Exp. Cell Res. 59: 336.PubMedCrossRefGoogle Scholar
  615. Weibel, E. R., 1969, Stereological principles for morphometry in electron microscopic cytology, Init. Rev. Cytol. 26: 235.CrossRefGoogle Scholar
  616. Weibel, E. R., 1973, Stereological techniques for electron microscopic morphometry, in: Principles and Techniques of Electron Microscopy, Vol. 3, ( M. A. Hayat, ed.), pp. 237–296, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  617. Weibel, E. R., Kistler, G. S., and Scherle, W. F., 1966, Practical stereological methods for morphometric cytology, J. Cell Biol. 30: 23.PubMedCrossRefGoogle Scholar
  618. Weier, E. T., and Benson, A. A., 1966, The molecular nature of chloroplast membranes, in: Biochemistry of Chloroplasts, Vol. 1, ( T. W. Goodwin, ed.), pp. 91–113, Academic Press, London, New York.Google Scholar
  619. Werner, G., Neumann, K., and Morgenstern, E., 1973, Ultradünne Gefrierschnitte von unfixierten und nicht eingebetteten biologischen Objekten. IV. Schneiden ohne Abschwimmflüssigkeit, Mikroskopie 29: 27.PubMedGoogle Scholar
  620. Westmeyer, H., and Lorenz, E., 1960, Die Herstellung von Aufdampfschichten vermittels kleiner elektronenstoßgeheizter Dampfquellen, Optik 17: 244.Google Scholar
  621. Winkelmann, H., and Meyer, H. W., 1968, A routine freeze-etching technique of high effectivity by simple technical means. 1. The principle, Exp. Pathol. 2: 277.Google Scholar
  622. Winkelmann, H., and Wammetsberger, S., 1969, Eine mit einfachen Mitteln durchführbare Routinegefrierätztechnik hoher Effektivität. Teil 11. Die technische Anordnung, Exp. Pathol. 3: 113.Google Scholar
  623. Winkler, H., Schneider, F. H., Rufener, C., Nakane, P. K., and Hörtnagl, H., 1974, Membranes of adrenal medulla: Their role in exocytosis, in: Advances in Cytopharmacology, Vol. 2, ( B. Ceccarelli and J. Meldolesi, eds.), pp. 127–139, Raven Press, New York.Google Scholar
  624. Winzler, R. J., 1970, Carbohydrates in cell surfaces, Int. Rev. Cytol. 29: 77.PubMedCrossRefGoogle Scholar
  625. Wold, F., 1972, Bifunctional reagents, in: Methods in Enzymology, Vol. XXV, ( C. H. W. Hirs and S. N. Timasheff, eds.), pp. 623–651, Academic Press, New York, London.Google Scholar
  626. Wood, J. G., 1973, The effects of glutaraldehyde and osmium on the proteins and lipids of myelin and mitochondria, Biochim. Biophys. Acta 329: 118.PubMedCrossRefGoogle Scholar
  627. Wrigglesworth, J. M., Packer, L., and Branton, D., 1970, Organization of mitochondrial structure as revealed by freeze-etching, Biochim. Biophys. Acta 205: 125.PubMedCrossRefGoogle Scholar
  628. Wunderlich, F., Speth, V., Batz, W., and Kleinig, H., 1973, Membranes of Tetrahymena. III. The effect of temperature on membrane core structures and fatty acid composition of Tetrahymena cells, Biochim. Biophys. Acta 298: 39.PubMedCrossRefGoogle Scholar
  629. Yuthavong, Y., Feldman, N., and Boyer, P. D., 1975, Some chemical characteristics of dimethylsuberimidate and its effect on sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 382: 116.PubMedCrossRefGoogle Scholar
  630. Zamboni, L., and DeMartino, C., 1967, Buffered picric acid-formaldehyde: A new, rapid fixative for electron microscopy, J. Cell Biol. 35: 148A.Google Scholar
  631. Zampighi, G., and Robertson, J. D., 1973, Fine structure of the synaptic discs separated from the gold fish medulla oblongata, J. Cell Biol. 56: 92.PubMedCrossRefGoogle Scholar
  632. Zernike, F., 1942, Phase contrast, a new method for the microscopic observation of transparent objects, Part I., Physica 9: 686CrossRefGoogle Scholar
  633. Zernike, F., 1942, Phase contrast, a new method for the microscopic observation of transparent objects, Part II, Physica 9: 974.CrossRefGoogle Scholar
  634. Zingsheim, H. P., 1972, Membrane structure and electron microscopy, the significance of physical problems and techniques (freeze etching), Biochim. Biophys. Acta 265: 339.PubMedCrossRefGoogle Scholar
  635. Zingsheim, H. P., and Bachmann, L., 1971, Elektronenmikroskopische Untersuchungen an Molekülen von Hochpolymeren, Kolloid-Z. Z. Polymere 246: 561.CrossRefGoogle Scholar
  636. Zingsheim, H. P., Abermann, R., and Bachmann, L., 1970a, An ultrashadowing unit for the freeze-etching technique, J. Physics E.: Sci. Instr. 3: 39.CrossRefGoogle Scholar
  637. Zingsheim, H. P., Abermann, R., and Bachmann, L., 1970b, Shadow casting and heat damage, Proceedings of the Seventh International Congress on Electron Microscopy, Grenoble, Vol. I, (P. Favard, ed.), pp. 411–412, Société Française de Microscopie Électronique, Paris.Google Scholar
  638. Zobel, C. R., and Beer, M., 1965, The use of heavy metals salts as electron stains, Int. Rev. Cytol. 18: 363.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • H. P. Zingsheim
    • 1
    • 2
    • 3
  • H. Plattner
    • 1
    • 2
    • 3
  1. 1.Max-Planck Institut für Biophysikalische Chemie, (Karl-Friedrich-Bonhoeffer Institut)GöttingenGermany
  2. 2.Institut für Zellbiologie der UniversitätMünchenGermany
  3. 3.Institut für Biochemie und Experimentelle Krebsforschung der UniversitätInnsbruckAustria

Personalised recommendations