Advertisement

Metal Hydrides pp 109-144 | Cite as

Hydrogen Mobility at High Concentrations

  • R. C. BowmanJr.
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 76)

Abstract

The roles of crystal structure, hydrogen site occupancy, phase transition, and isotope substitution on the hydrogen diffusion behavior will be considered. After brief discussions of general diffusion concepts and the experimental methods that have been most often used to determine the hydrogen mobility in the high concentration metal hydride phases, the nuclear magnetic resonance techniques that have been extensively applied in hydride diffusion studies will be reviewed in some detail. The emphasis will be on relating measured nuclear relaxation times with diffusion parameters as well as NMR techniques to directly measure the hydrogen diffusion constants. The diversity of diffusion behavior will be illustrated with several specific metal hydride systems including: PDHx, γ-TiHx and structurally related TiCuH, and VHx. Plausible models of the microscopic diffusion mechanisms will also be presented and compared with the observed diffusion behavior in these systems.

Keywords

Nuclear Magnetic Resonance Hydrogen Diffusion Diffusion Behavior Metal Hydride Nuclear Magnetic Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Völkl and G. Alefeld, in Diffusion in Solids, Recent Developments, Ed, A. S. Nowick and J. J. Burton ( Academic, New York, 1975 ), p. 231.Google Scholar
  2. 2.
    J. Völkl and G. Alefeld, in Hydrogen in Metals I - Basic Properties, Ed. by G. Alefeld and J. Völkl ( Springer-Verlag, Berlin, 1978 ), p. 321.CrossRefGoogle Scholar
  3. 3.
    R. M. Cotts, Ber. Bunsenges. Physik. Chem. 76, 760 (1972).Google Scholar
  4. 4.
    R. M. Cotts, in Hydrogen in Metals I - Basic Properties, Ed. by G. Alefeld and J. Völkl ( Springer-Verlag, Berlin, 1978 ), p. 227.CrossRefGoogle Scholar
  5. 5.
    K. Sköld, in Hydrogen in Metals I - Basic Properties, Ed. by G. Alefeld and J. Völkl ( Springer-Verlag, Berlin, 1978 ), p. 267.CrossRefGoogle Scholar
  6. 6.
    A. Abragam, Principles of Nuclear Magnetism ( Oxford, London, 1961 ).Google Scholar
  7. 7.
    H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954)CrossRefGoogle Scholar
  8. S. Meiboom and D. Gill, Rev. Sci. Instru. 29, 688 (1958).CrossRefGoogle Scholar
  9. 8.
    D. Zamir and R. M. Cotts, Phys. Rev. 134, A666 (1964)CrossRefGoogle Scholar
  10. D. Zamir and R. M. Cotts, Proc. XIII Colloque Ampere (North Holland, Amsterdam (1964)), p. 276.Google Scholar
  11. 9.
    C. Korn and D. Zamir, J. Phys. Chem. Solids 31, 489 (1970).CrossRefGoogle Scholar
  12. 10.
    E. O. Stejskal and J. E. Tanner, J. Chem. Phys. 42, 288 (1965).CrossRefGoogle Scholar
  13. 11.
    W. D. Williams, E. F. W. Seymour, and R. M. Cotts, J. Magn. Reson. 31, 271 (1978).Google Scholar
  14. 12.
    R. F. Karlicek, Jr. and I. J. Lowe, J. Magn. Reson. 37, 75 (1980).Google Scholar
  15. 13.
    G. K. Schoep, N. J. Poulis, and R. R. Arons, Physica 75, 297 (1974).CrossRefGoogle Scholar
  16. 14.
    P. P. Davis, E. F. W. Seymour, D. Zamir, W. D. Williams, and R. M. Cotts, J. Less-Comm. Met. 49, 159 (1976).CrossRefGoogle Scholar
  17. 15.
    A. Schmalz and F. Noack, Ber. Bunsenges, Phys, Chem. 78, 339 (1974).Google Scholar
  18. 16.
    L. D. Bustard, R. M. Cotts, and E. F. W. Seymour, Zeitz. Phys. Chem, N. F. 115, 247 (1979)CrossRefGoogle Scholar
  19. L. D. Bustard, R. M. Gotts, and E. F. W. Seymour, submitted to Phys. Rev.Google Scholar
  20. 17.
    C. L. Bisson and W. D. Wilson, in Effects Hydrogen Behavior Proc. Int. Conf. 1975, A. W. Thompson and I. M. Berstein (Eds.) AIME (1976), p. 416.Google Scholar
  21. 18.
    C. F. Melius and T. H. Upton, Bull. Am. Phys. Soc. 23, 234 (1978).Google Scholar
  22. 19.
    R. C. Bowman, Jr., A. Attalla, and A. J. Maeland, Solid State Comm. 27, 501 (1978).CrossRefGoogle Scholar
  23. 20.
    A. Santoro, A. Maeland, and J. J. Rush, Acta Cryst. B34, 3059 (1978).CrossRefGoogle Scholar
  24. 21.
    T. Schober and H. Wenzl, in Hydrogen in Metals II - Application Orientation Properties, Ed. by G. Alefeld and J. Völk1 (Springer-Verlag, 1978 ), p. 11.Google Scholar
  25. 22.
    K. W. Kehr, in Hydrogen in Metals I - Basic Properties, Ed. by G. Alefeld and J. Völkl ( Springer-Verlag, Berlin, 1978 ), p. 197.CrossRefGoogle Scholar
  26. 23.
    G. Bambakidis, M. W. Pershing, and R. C. Bowman, Jr., Scrip. Met. 13, 441 (1979).CrossRefGoogle Scholar
  27. 24.
    R. C. Bowman, Jr. and W. E. Tadlock (to be published).Google Scholar
  28. 25.
    H. Asano and M. Hirabayashi in 2nd Int. Cong. Hydrogen in Metal, Paris, 1977, 106.Google Scholar
  29. 26.
    R. C. Bowman, Jr., A. Attalla, and W. E. Tadlock, Int. J. Hydrogen Energy 1, 421 (1977).CrossRefGoogle Scholar
  30. 27.
    Y. Fukai and S. Kazama, Acta Met. 25, 59 (1977).CrossRefGoogle Scholar
  31. 28.
    P. A. Fedders, Phys. Rev. B18, 1055 (1978).Google Scholar
  32. 29.
    H. T. Weaver, Phys. Lett 35A, 417 (1971)Google Scholar
  33. H. T. Weaver and J. P. Van Dyke, Phys. Rev. B6, 694 (1972).Google Scholar
  34. 30.
    M. Bogdan, V. Simplaceanu, and D. Lupu, in Proceedings of XXth Congress AMPERE, Ed. by E. Kundla, E. Lippman, and T. Saluvere ( Springer-Verlag, Berlin, 1979 ), p. 131.Google Scholar
  35. 31.
    H. G. Bohn, Jül-Ber. Jül-853-FF (Report), (1972).Google Scholar
  36. 32.
    R. C. Bowman, Jr., A. Attalla, and B. D. Craft (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • R. C. BowmanJr.
    • 1
  1. 1.Monsanto Research CorporationMound FacilityMiamisburgUSA

Personalised recommendations